

# **Omni-Link II**

**Protocol Description** 

This document contains the intellectual property of Home Automation, Inc. (HAI). HAI authorizes the use of this information for the sole purpose of developing software and systems to work with HAI controllers. The specifications in this document are subject to change without notice.

## **CONTENTS**

| GENERAL                                  | 1  |
|------------------------------------------|----|
| PROTOCOL DESCRIPTION                     | 1  |
| OMNI-LINK II APPLICATION-LEVEL PACKETS   | 1  |
| PROTOCOL RULES                           | 2  |
| ENCRYPTION                               | 3  |
| APPLICATION DATA MESSAGE FORMAT          | 4  |
| MESSAGE TYPES                            | 5  |
| ACKNOWLEDGEMENT MESSAGES                 |    |
| ACKNOWLEDGE                              | 5  |
| NEGATIVE ACKNOWLEDGE                     | 5  |
| END OF DATA                              | 5  |
| REQUEST MESSAGES                         | 6  |
| REQUEST SYSTEM INFORMATION               | 6  |
| REQUEST SYSTEM STATUS                    |    |
| REQUEST SYSTEM TROUBLES                  |    |
| REQUEST SYSTEM FEATURES                  |    |
| REQUEST SYSTEM FORMATS                   |    |
| REQUEST OBJECT TYPE CAPACITIES           |    |
| REQUEST OBJECT PROPERTIES                |    |
| REQUEST OBJECT STATUS                    | 9  |
| REQUEST AUDIO SOURCE STATUS              |    |
| REQUEST ZONE READY STATUS                |    |
| REQUEST CONNECTED SECURITY SYSTEM STATUS | 10 |
| REPORT MESSAGES                          | 11 |
| SYSTEM INFORMATION                       | 11 |
| SYSTEM STATUS                            | 12 |
| SYSTEM TROUBLES                          | 13 |
| SYSTEM FEATURES                          | 13 |
| SYSTEM FORMATS                           |    |
| OBJECT TYPE CAPACITIES                   |    |
| OBJECT PROPERTIES                        | 15 |
| ZONE PROPERTIES                          | 15 |
| UNIT PROPERTIES                          |    |
| BUTTON PROPERTIES                        |    |
| CODE PROPERTIES                          |    |
| AREA PROPERTIES                          |    |
| THERMOSTAT PROPERTIES                    |    |
| MESSAGE PROPERTIES                       |    |
| AUXILIARY SENSOR PROPERTIES              |    |
| AUDIO SOURCE PROPERTIES                  |    |
| AUDIO ZONE PROPERTIES                    | 10 |

| OBJECT STATUS                                |    |
|----------------------------------------------|----|
| ZONE STATUS                                  |    |
| UNIT STATUS                                  |    |
| AREA STATUS                                  |    |
| THERMOSTAT STATUS                            |    |
| AUXILIARY SENSOR STATUS                      |    |
| AUDIO ZONE STATUS                            | 20 |
| EXPANSION ENCLOSURE STATUS                   | 27 |
| AUDIO SOURCE STATUS                          |    |
| ZONE READY STATUS                            |    |
| CONNECTED SECURITY SYSTEM STATUS             | 28 |
| EVENT LOG MESSAGES                           | 29 |
| UPLOAD EVENT RECORD                          | 29 |
| EVENT LOG DATA                               | 29 |
| NAME MESSAGES                                | 32 |
| UPLOAD NAMES                                 | 32 |
| NAME DATA                                    |    |
| CLEAR NAMES                                  |    |
| DOWNLOAD NAMES                               | 33 |
| VOICE NAME MESSAGES                          | 34 |
| UPLOAD VOICE NAMES                           | 34 |
| VOICE NAME DATA                              | 34 |
| CLEAR VOICE NAMES                            |    |
| DOWNLOAD VOICE NAMES                         | 35 |
| COMMAND MESSAGES                             | 36 |
| CONTROLLER COMMAND                           |    |
| CONNECTED SECURITY SYSTEM COMMAND            |    |
| SET TIME COMMAND                             | 42 |
| ACTIVATE KEYPAD EMERGENCY                    | 42 |
| VALIDATE SECURITY CODE MESSAGES              |    |
| REQUEST SECURITY CODE VALIDATION             |    |
| SECURITY CODE VALIDATION                     | 43 |
| NOTIFICATION MESSAGES                        | 44 |
| ENABLE NOTIFICATIONS                         | 44 |
| OBJECT EVENT NOTIFICATIONS                   | 44 |
| ZONE NOTIFICATIONS:                          |    |
| UNIT NOTIFICATIONS:                          |    |
| THERMOSTAT NOTIFICATIONS:                    |    |
| AUXILIARY SENSOR NOTIFICATIONS:              |    |
| OTHER EVENT NOTIFICATIONS                    |    |
| APPENDIX A - NETWORK DIAGRAMS                | 48 |
| APPENDIX B - CRC-16 ERROR DETECTION ROUTINES | 50 |
| APPENDIX C - OMNI TEMPERATURE FORMAT         | 52 |
| APPENDIX D REVISION HISTORY                  | 55 |

### **GENERAL**

This document defines the Omni-Link II communications protocol. This protocol allows an external device (hereafter referred to as the "client") to communicate with an HAI automation controller using the controller's Ethernet network interface. Omni-Link II allows the client to monitor the status of the HAI controller and to control its operation.

When enabled, Omni-Link II will also automatically send to the client event notification messages upon the occurrence of various changes in the controller. This eliminates the need for the client to continually poll the controller for updated information.

Omni-Link II uses standard Ethernet, TCP (Transmission Control Protocol) and IP (Internet Protocol) protocol layers to transport Omni-Link II application-level packets across the network. The use of standard transport and routing protocols enables the HAI controller to be used in any standard network environment. The network environment may range from a small local area network (LAN) in a single residence to the worldwide Internet.

Refer to diagrams in Appendix A for related details while reading the protocol description in this document.

### PROTOCOL DESCRIPTION

The HAI controller connects to the network via a standard Ethernet interface. The controller listens for all TCP/IP communications addressed to it on a specific TCP port number. The controller tracks the state of different client "sessions" by the unique combination of the source IP address (from the IP header) and the source port (from the TCP header) of the client.

The Ethernet Frame, IP Header, and TCP Header merely provide the standardized information required by the network infrastructure (routers, etc.) to transport Omni-Link II application-level packets between client and controller. The actual controller transaction requests and responses are contained in the Omni-Link II application-level packet. The structure and interpretation of the Omni-Link II application-level packet is described in the following paragraphs.

### OMNI-LINK II APPLICATION-LEVEL PACKETS

The first field of the Omni-Link II application-level packet is a 16-bit message sequence number, transmitted most-significant-byte first. This field provides a mechanism for detecting duplicate packets and dynamically adjusting network timeout periods to accommodate varying network delays. If the value is set to zero, sequence tracking is disabled for the packet. If sequence tracking is used, the client increments this value each time it sends a packet to the controller. Note that since a sequence number of zero has special significance, the sequence number value rolls over from 65535 to one instead of zero. The controller replies to client requests using the same message sequence number assigned by the client.

The next field is the 8-bit "message type". This value defines the nature of the message, so that it can be processed accordingly.

The next 8-bit field is reserved for future use.

And, finally, the "message data" field is comprised of the Omni-Link II application message data (any data or message associated with the specified "message type"). This field may be empty. This is the only field that is ever encrypted.

### PROTOCOL RULES

When the controller receives an Omni-Link II application-level packet, it examines the "message type" field, and takes the appropriate action as defined by the following rules.

If the controller receives a packet that is not a valid Omni-Link II application-level packet (i.e., missing or invalid "message type"), the controller quietly discards the packet without a reply.

If the message type is "Client request new session":

- ➤ If the controller cannot initiate a new session (i.e., too many sessions already open, etc.), it replies to the client with a "Controller cannot start new session" message, and no further action is taken; otherwise...
- > If the controller already has a session open for this client, that session is quietly terminated (i.e., no termination message is sent to the client), and a new session is initialized as described below.
- The controller initiates a new session associated with this unique client.
- The controller uses a random number generator to produce a 40-bit "session ID". The session ID will be used by both client and controller to modify the private encryption key, which is known to both, resulting in a key that is unique for this session.
- The controller replies to the client with a "Controller acknowledge new session" message data consists of a 16-bit value that indicates the HAI network protocol version being used by the controller, followed by the 40-bit session ID, both transmitted most-significant-byte first.
- > The controller generates the unique encryption key for this session and initializes the encryption/decryption algorithms. The 128-bit session key is computed as follows:
  - a) The 88 most significant bits of the session key are identical to the corresponding bits of the private key.
  - b) The 40 least significant bits of the session key are the result of a logical XOR of the 40 least significant bits of the private key and the 40 bits of the session ID.

If the message type is "Client request secure connection":

- If the controller does not already have an active session for the client, it replies to the client with a "Controller session terminated" message, and no further action is taken; otherwise...
  - a) The controller decrypts the message data, which should consist of the 40-bit session ID (transmitted MSB first).
  - b) The controller compares the session ID received from the client to the session ID previously generated by the controller.
  - c) If the session IDs are identical, this confirms that the client received the session ID intact, and used it to produce the correct session encryption key. The controller responds with the "Acknowledge secure connection" message, with the session ID in the data field.
  - d) If the session IDs are NOT identical, the controller replies with the "Controller session terminated" message, and terminates the session.

If the message type is "Omni-Link II message":

- ➤ If the controller does not already have an active session for the client, it replies to the client with a "Controller session terminated" message, and no further action is taken; otherwise...
  - The controller decrypts the message data and treats it as an Omni-Link II application data message.
  - If the Omni-Link II application data message requires a reply, the controller encrypts the Omni-Link II application data reply message and replies to the client with a message type of "Omni-Link II message" and the encrypted message in the data field.

If the message type is "Client session terminated":

> The controller replies with the "Controller session terminated" message and, if a session is active, terminates the session.

### **ENCRYPTION**

As mentioned, certain message types require encryption or decryption of the "message data" portion of the Omni-Link II application packet. This section describes the encryption/decryption methods.

Encryption and decryption of data in the Omni-Link II application packet is based on the Advanced Encryption Standard (AES) using a 128-bit cryptographic key.

The AES (sometimes referred to as the Rijndael algorithm, derived from the names of the developers) was selected by the National Institute of Standards and Technology (NIST) and approved by the U.S. Department of Commerce (in May, 2002) as a robust replacement for the widely-used, but aging and vulnerable, DES encryption standard. The AES algorithm is a symmetric block cipher that is capable of using cryptographic keys of 128, 192 or 256 bits to encrypt and decrypt data in blocks of 128 bits. Further information about the AES can be found in the Federal Information and Processing Standards (FIPS) publication FIPS-197 and at the following NIST website:

http://csrc.nist.gov/CryptoToolkit/aes

The following procedure is used to encrypt Omni-Link II application data:

- 1. Process data in 128-bit (16-byte) blocks. If available data does not fill a 16-byte block, the data is left-justified and padded on the right with zeros to fill the block.
- 2. Modify the first two bytes of the 16-byte encryption block by performing a logical XOR operation with the two bytes of the "message sequence number" in the HAI header (i.e., XOR the first byte of the encryption block with the MSB of the message sequence number, and XOR the second byte of the encryption block with the LSB of the message sequence number).
- 3. Encrypt the 16-byte block using the AES encryption algorithm and the 128-bit session key that was negotiated when the client and controller established the secure connection.
- 4. Process the next block of data until all data has been processed.

A similar procedure is used to decrypt Omni-Link II application data:

- 1. Process data in 128-bit (16-byte) blocks.
- 2. Decrypt the 16-byte block using the AES decryption algorithm and the 128-bit session key that was negotiated when the client and controller established the secure connection.
- 3. Modify the first two bytes of the 16-byte encryption block by performing a logical XOR operation with the two bytes of the "message sequence number" in the HAI header (i.e., XOR the first byte of the encryption block with the MSB of the message sequence number, and XOR the second byte of the encryption block with the LSB of the message sequence number).
- 4. Process the next block of data until all data has been processed.
- 5. If the number of bytes in the original message (prior to encryption) was not an exact multiple of 16, the decrypted message will have one or more trailing pad bytes. The length of the actual message (not including the pad bytes) should be determined by examining the message length field of the Omni-Link II application data message.

#### APPLICATION DATA MESSAGE FORMAT

The application data in the Omni-Link II protocol is binary. That is, one byte of data is sent as a single character whose hex value is 0x00 through 0xFF.

The general format of an Omni-Link II application data message is as follows:

| Start character 1 byte Value is always 0x21  Message length 1 byte Value is the total number of bytes in the "message type" and "data" fields Value indicates the specific function of the message Data variable Zero or more bytes, depending on the specific "message type"  CRC 1 1 byte Least-significant-byte of 16-bit CRC  CRC 2 1 byte Most-significant-byte of 16-bit CRC | Field                                           | Length                                 | Comments                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                    | Message length<br>Message type<br>Data<br>CRC 1 | 1 byte<br>1 byte<br>variable<br>1 byte | Value is the total number of bytes in the "message type" and "data" fields Value indicates the specific function of the message Zero or more bytes, depending on the specific "message type" Least-significant-byte of 16-bit CRC |

The CRC-16 error detection algorithm is used to provide robust error detection in Omni-Link II application data messages. The CRC1 and CRC2 error check bytes are the 16-bit CRC-16 polynomial remainder, sent least-significant-bit first. The CRC value is calculated using all bytes of the message, except the "start character" and the CRC fields. Sample routines to calculate the CRC-16 error check bytes are provided in Appendix B.

### **MESSAGE TYPES**

Different Omni-Link II application data message types are provided in the Omni-Link II protocol to perform different actions. These Omni-Link II application data message types can be divided into several groups:

- Acknowledgement messages
- Request messages
- Report messages
- Event log messages
- Name messages
- Voice name messages
- Command messages
- Validate security code messages
- Notifications messages

### ACKNOWLEDGEMENT MESSAGES

Acknowledgement messages are sent to acknowledge the receipt of another message. An ACKNOWLEDGE message is sent in response to another message to indicate that the message was received correctly and processed.

### **ACKNOWLEDGE**

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x01 |
| Data            | none |
| CRC 1           | 0xC0 |
| CRC 2           | 0x50 |
|                 |      |

A NEGATIVE ACKNOWLEDGE message is sent in response to another message to indicate that the message was received correctly, but was not processed due to an error in the message format or to an inability to successfully perform the requested action.

### NEGATIVE ACKNOWLEDGE

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x02 |
| Data            | none |
| CRC 1           | 0x80 |
| CRC 2           | 0x51 |

An END OF DATA message is sent in response to a message to indicate that the message was received correctly, but the information for the request does not exist.

### END OF DATA

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x03 |
| Data            | none |
| CRC 1           | 0x41 |
| CRC 2           | 0x91 |

### **REQUEST MESSAGES**

Request messages are sent by the client to the HAI controller to request that the controller report configuration and status information. The following information can be requested:

- System information
- System status
- System troubles
- System features
- System formats
- Object type capacities
- Object properties
- Object status
- Audio source status
- Zone ready status
- Connected security system status

### REQUEST SYSTEM INFORMATION

This message requests the HAI controller to report its model number, software version, and local phone number.

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x16 |
| Data            | none |
| CRC 1           | 0x80 |
| CRC 2           | 0x5E |

Expected reply SYSTEM INFORMATION

### REQUEST SYSTEM STATUS

This message requests the HAI controller to report its time, date, calculated time of sunrise and sunset, battery reading, alarm status for any area that is in alarm.

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x18 |
| Data            | none |
| CRC 1           | 0x01 |
| CRC 2           | 0x9A |

Expected reply SYSTEM STATUS

### REQUEST SYSTEM TROUBLES

This message requests the HAI controller to report any system troubles. The response will be variable.

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x1A |
| Data            | none |
| CRC 1           | 0x80 |
| CRC 2           | 0x5B |

Expected reply SYSTEM TROUBLES

### REQUEST SYSTEM FEATURES

This message requests the HAI controller to report its enabled features.

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x1C |
| Data            | none |
| CRC 1           | 0x00 |
| CRC 2           | 0x59 |

Expected reply: SYSTEM FEATURES

### REQUEST SYSTEM FORMATS

This message requests the HAI controller to report the configured temperature format, time format, and date format.

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x28 |
| Data            | none |
| CRC 1           | 0x01 |
| CRC 2           | 0x8E |

Expected reply: SYSTEM FORMATS

### REQUEST OBJECT TYPE CAPACITIES

This message requests the HAI controller to report the number of objects of the specified type that the controller supports.

| Start character | 0x21        |
|-----------------|-------------|
| Message length  | 0x02        |
| Message type    | 0x1E        |
| Data 1          | object type |
| CRC 1           | varies      |
| CRC 2           | varies      |
|                 |             |

Expected reply: OBJECT TYPE CAPACITIES

The available object types and filters are as follows:

| Object Type | Object Description  | Filter 1 | Filter 2 | Filter 3 |
|-------------|---------------------|----------|----------|----------|
| 1           | Zone                | Name     | Area     |          |
| 2           | Unit                | Name     | Area     | Room     |
| 3           | Button              | Name     | Area     |          |
| 4           | Code                | Name     | Area     |          |
| 5           | Area                | Name     |          |          |
| 6           | Thermostat          | Name     | Area     |          |
| 7           | Message             | Name     | Area     |          |
| 8           | Auxiliary Sensor    | Name     | Area     |          |
| 9           | Audio Source        | Name     |          |          |
| 10          | Audio Zone          | Name     |          |          |
| 11          | Expansion Enclosure |          |          |          |
| 12          | Console             |          | Area     |          |

### REQUEST OBJECT PROPERTIES

This message requests the HAI controller to report the properties of the specified object. The object type and index number specifies what is being requested. The object type identifies whether the requested object is a zone, unit, button, code, area, thermostat, message, auxiliary sensor, audio source, audio zone, expansion, or console. The index number (0-511) identifies the specific object.

The index number is used in conjunction with the relative direction (offset) value to determine which object in the list will be sent. If the offset is 0, the controller will return the properties of the specified object (index number). If the offset is -1, the controller will return the properties of the object before the specified index number. If the offset is 1, the controller will return the properties of the object after the specified index number.

Filters are used to narrow the return to an object with specific properties.

Filter 1: allows only named objects to be returned (0=Named or Unnamed, 1=Named, 2=Unnamed).

Filter 2: allows only an object that is in specific Areas to be returned. The area statuses for eight areas are packed into one message byte. The status for Area 1 is indicated by bit 7. Lower order bits indicate the statuses of Area 2 – Area 8, respectively. The bits corresponding to specified Areas are on.

Filter 3: allows only an object that is defined as a Load in a Room, Room, or Independent Load to be returned (0=Any Load, 1-31=Load in a Room, 254=Room, 255=Independent Load).

| Start character | 0x21                            |
|-----------------|---------------------------------|
| Message length  | 0x08                            |
| Message type    | 0x20                            |
| Data 1          | object type                     |
| Data 2          | index number (MSB)              |
| Data 3          | index number (LSB)              |
| Data 4          | relative direction $(-1, 0, 1)$ |
| Data 5          | filter 1                        |
| Data 6          | filter 2                        |
| Data 7          | filter 3                        |
| CRC 1           | varies                          |
| CRC 2           | varies                          |
|                 |                                 |

Expected reply: OBJECT PROPERTIES

### REQUEST OBJECT STATUS

This message is used to request the status of a group of zone, unit, area, thermostat, message, auxiliary sensor, audio zone, or expansion enclosure objects.

Zones: The status reported for each zone includes the zone number, current condition of the zone (secure,

not ready, or trouble), and the current analog loop reading for the zone.

Units: The status reported for each unit includes the unit number, current condition of the unit, and any

time remaining on a timed command.

Areas: The status reported for each area includes the area number, current mode of the area, alarm status of

the area, and time remaining on an entry or exit timer.

The status reported for each thermostat includes the thermostat number, whether the thermostat is Thermostats:

communicating with the controller, the current temperature, the heat and cool setpoints, the system

mode, the fan mode, and whether the thermostat has been placed in hold mode.

Messages: The status reported for each message includes the message number, which messages are currently

being displayed and what displayed messages have not been acknowledged.

Auxiliary: The status reported for each auxiliary sensor includes the sensor number, the output status for each

PESM, the current temperature or humidity reading, and the low and high setpoints.

Audio Zone: The status reported for each audio zone includes the audio zone number, the on/off status of the

zone, the selected source for the zone, the volume, and whether the zone is muted.

Expansion: The status reported for each expansion enclosure includes the expansion enclosure number, whether

the thermostat is communicating with the controller, and the battery reading.

The request is sent using two bytes for each object.

Start character 0x21Message length 0x06 0x22 Message type Data 1 object type

starting object (MSB) Data 2 Date 3 starting object (LSB) Data 4 ending object (MSB)

varies

Data 5 ending object (LSB) CRC 1 varies CRC 2

Expected reply: **OBJECT STATUS** 

### REQUEST AUDIO SOURCE STATUS

This message requests the HAI controller to report the status of an audio source. This is used to report any metadata (album, song, artist, etc.) or other feedback from the specified source.

Start character 0x210x05Message length Message type 0x30

Data 1 source number (1-8)

Data 2 position CRC 1 varies CRC 2 varies

Expected reply **AUDIO SOURCE STATUS**  The source status is sent as a series of zero or more AUDIO SOURCE STATUS messages, followed by an END OF DATA message. Each AUDIO SOURCE STATUS message contains the data for one field position of metadata (album, song, artist, etc.) or the overall feedback from the source, such as the frequency of a tuner.

A field ID is sent as part of each AUDIO SOURCE STATUS message to identify the metadata field that is being reported. If this field ID is zero, it indicates that there is only one field of information, such as a frequency or other status information. The field IDs reported by the HAI controller are the field IDs reported by the audio system. If an END OF DATA message is sent back immediately in response to the REQUEST AUDIO SOURCE STATUS message, no source data is available.

If the source status has not yet been obtained, send a REQUEST AUDIO SOURCE STATUS message with the position number set to "0". When an AUDIO SOURCE STATUS message is received from the controller, it contains a sequence number and position number. Send a second AUDIO SOURCE STATUS message incrementing the position number contained in the AUDIO SOURCE STATUS message by one to cause the HAI controller to send the next field of information. If the AUDIO SOURCE STATUS message contains a different sequence number from the previous message, the metadata in the connected audio system has been updated. Send a REQUEST AUDIO SOURCE STATUS message with the position number set to "0" to get the updated metadata.

Sending an AUDIO SOURCE STATUS message with the same position number to the HAI controller will cause the HAI controller to resend its last message.

#### REQUEST ZONE READY STATUS

This message is used to report the secure/not ready status of security zones. Any burglary or 24 hour zone that is not in the secure state will be reported as not ready. Auxiliary and temperature zones are always reported as secure.

| 0x21 |
|------|
| 0x01 |
| 0x38 |
| none |
| 0x00 |
| 0x42 |
|      |

Expected reply: ZONE READY STATUS

### REQUEST CONNECTED SECURITY SYSTEM STATUS

This message is used to report the mode and status of each partition in a security system connected to a Lumina or Lumina Pro controller.

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x2D |
| Data            | none |
| CRC 1           | 0xC1 |
| CRC 2           | 0x8D |

Expected Reply: CONNECTED SECURITY SYSTEM STATUS

### REPORT MESSAGES

Report messages are sent in response to each of the request messages. The following information is reported:

- System information
- System status
- System troubles
- System features
- System formats
- Object type capacities
- Object properties
- Object status
- Audio source status
- Zone ready status
- Connected security system status

### SYSTEM INFORMATION

This message is sent by the HAI controller in reply to a REQUEST SYSTEM INFORMATION message. The controller reports its model number, software version, and local phone number.

| Start character | 0x21               |
|-----------------|--------------------|
| Message length  | 0x1E               |
| Message type    | 0x17               |
| Data 1          | model number       |
| Data 2          | major version      |
| Data 3          | minor version      |
| Data 4          | revision           |
| Data 5-29       | local phone number |
| CRC 1           | varies             |
| CRC 2           | varies             |

The model number identifies the controller model, such as Omni IIe, OmniPro II, Lumina, or Lumina Pro. The following model numbers are defined:

| Model Number | Model          |
|--------------|----------------|
| 30           | HAI Omni IIe   |
| 16           | HAI OmniPro II |
| 36           | HAI Lumina     |
| 37           | HAI Lumina Pro |

The major version, minor version, and revision identify the controller software version. For example, if the software version is 2.16b, the major version would be 0x02, the minor version would be 0x10, and the revision would be 0x02. Revision 0x00 specifies no revision letter, revision 0x01 specifies revision "a", and so on. If the revision is a 2's complement negative number, such as 0xFF, it specifies a prototype revision such as X1 or X2. Revision 0xFF specifies revision X1, revision 0xFE specifies revision X2, and so on.

The local phone number corresponds to the "MY PHONE NUMBER" setting in the controller. It is an ASCII text string up to 24 characters long, terminated with a trailing 0x00.

### SYSTEM STATUS

This message is sent by the HAI controller in reply to a REQUEST SYSTEM STATUS message. The controller reports its time, date, calculated time of sunrise and sunset, battery reading, and current alarm(s) in each area.

| Start character | 0x21                                 |
|-----------------|--------------------------------------|
| Message length  | (2 * number of alarms) + 15          |
| Message type    | 0x19                                 |
| Data 1          | time/date valid flag (0-1)           |
| Data 2          | year (0-99)                          |
| Data 3          | month (1-12)                         |
| Data 4          | day (1-31)                           |
| Data 5          | day of week (1-7)                    |
| Data 6          | hour (0-23)                          |
| Data 7          | minute (0-59)                        |
| Data 8          | second (0-59)                        |
| Data 9          | daylight savings time flag (0-1)     |
| Data 10         | calculated sunrise hour (0-23)       |
| Data 11         | calculated sunrise minute (0-59)     |
| Data 12         | calculated sunset hour (0-23)        |
| Data 13         | calculated sunset minute (0-59)      |
| Data 14         | battery reading                      |
| Data 15         | area in alarm (1-8)                  |
| Data 16         | alarm status for first alarm (0-255) |
| •••             |                                      |
| Data n-1        | area in alarm (1-8)                  |
| Data n          | alarm status for last alarm (0-255)  |
| CRC 1           | varies                               |
| CRC 2           | varies                               |
|                 |                                      |

The time/date valid flag is zero if the time and date have not been set in the controller. The daylight savings time flag is nonzero if daylight savings time is in effect. The day of the week is 1 for Monday through 7 for Sunday.

The bits in the area alarm status bytes are shown below. The corresponding bit is set if the condition is true.

| Bit | Condition         |
|-----|-------------------|
| 0   | Burglary alarm    |
| 1   | Fire alarm        |
| 2   | Gas alarm         |
| 3   | Auxiliary alarm   |
| 4   | Freeze alarm      |
| 5   | Water alarm       |
| 6   | Duress alarm      |
| 7   | Temperature alarm |

### SYSTEM TROUBLES

This message is sent by the HAI controller in reply to a REQUEST SYSTEM TROUBLES message. The controller reports any system troubles. If multiple troubles exist, each trouble is reported in a separate data byte.

| Start character | 0x21                   |
|-----------------|------------------------|
| Message length  | number of troubles + 1 |
| Message type    | 0x1B                   |
| Data 1          | first trouble          |
| •••             |                        |
| Data n          | last trouble           |
| CRC 1           | varies                 |
| CRC 2           | varies                 |

The system trouble conditions are shown below.

| Trouble Byte | Condition            |
|--------------|----------------------|
| 1            | Freeze               |
| 2            | Battery low          |
| 3            | AC power             |
| 4            | Phone line           |
| 5            | Digital communicator |
| 6            | Fuse                 |
| 7            | Freeze               |
| 8            | Battery low          |

### SYSTEM FEATURES

This message is sent by the HAI controller in reply to a REQUEST SYSTEM FEATURES message. The controller reports any enabled features. If multiple features are enabled, each feature is reported in s separate data byte.

| Start character | 0x21                   |
|-----------------|------------------------|
| Message length  | number of features + 1 |
| Message type    | 0x1D                   |
| Data 1          | first feature          |
|                 |                        |
| Data n          | last feature           |
| CRC 1           | varies                 |
| CRC 2           | varies                 |
|                 |                        |

The available system features are as follows:

| Feature Byte | System Feature         |
|--------------|------------------------|
| 1            | NuVo Concerto          |
| 2            | NuVo Essentia/Simplese |
| 3            | NuVo Grand Concerto    |
| 4            | Russound               |
| 5            | HAI Hi-Fi              |
| 6            | Xantech                |
| 7            | Speakercraft           |
| 8            | Proficient             |

### SYSTEM FORMATS

This message is sent by the HAI controller in reply to a REQUEST SYSTEM FORMATS message. The controller reports the configured temperature format, time format, and date format.

| Start character | 0x21                     |
|-----------------|--------------------------|
| Message length  | 0x04                     |
| Message type    | 0x29                     |
| Data 1          | temperature format (1-2) |
| Data 2          | time format (1-2)        |

Data 3 date format (1-2)

CRC 1 varies CRC 2 varies

The temperature format byte is shown below.

1 = F2 = C

The time format byte is shown below.

1 = 12 HR2 = 24 HR

The date format byte is shown below.

1 = MMDD2 = DDMM

### **OBJECT TYPE CAPACITIES**

This message is sent by the HAI controller in reply to a REQUEST OBJECT TYPE CAPACITIES message. The HAI controller reports the number of objects of the specified type that the controller supports.

Start Character 0x21

Message Length 0x04

Message Type 0x1F

Data 1 capacity type

Data 2 capacity (MSB)

Data 3 capacity (LSB)

CRC 1 varies CRC 2 varies

### **OBJECT PROPERTIES**

This message is sent by the HAI controller in reply to a REQUEST OBJECT PROPERTIES message. The HAI controller reports the properties of the specified object.

| Start character | 0x21                     |
|-----------------|--------------------------|
| Message length  | number of data bytes + 1 |
| Message type    | 0x21                     |
| Data 1          | object type              |
| Data 2          | object number (MSB)      |
| Data 3          | object number (LSB)      |
| ••••            |                          |
| Data n          | last property            |
| CRC 1           | varies                   |
| CRC 2           | varies                   |

The object type identifies whether the returned properties are for a zone, unit, button, code, area, thermostat, message, auxiliary sensor, audio zone, or audio source object. The object number identifies the specific object (zone, unit, button, code, area, thermostat, message, auxiliary sensor, audio zone, or audio source object).

The object name data specifies the name for the respective object. Each name consists of one or more printable ASCII characters, followed by a terminating zero. Zone and message names can be up to 15 characters long, exclusive of the terminating zero. All other names may be up to 12 characters long. Names are always transferred with a fixed number of data bytes for each name type, as shown in the table below. The terminating zero indicates the actual end of the name. Data bytes following the terminating zero may be filled with any value. If the first character received is zero, the object is not named in the controller.

Listed below are the available object types and maximum name length for each object type:

| Object Type | Object Description | Maximum Name Length |
|-------------|--------------------|---------------------|
| 1           | Zone               | 15                  |
| 2           | Unit               | 12                  |
| 3           | Button             | 12                  |
| 4           | Code               | 12                  |
| 5           | Area               | 12                  |
| 6           | Thermostat         | 12                  |
| 7           | Message            | 15                  |
| 8           | Auxiliary Sensor   | 15                  |
| 9           | Audio Source       | 12                  |
| 10          | Audio Zone         | 12                  |

See NAME DATA for additional information.

### **ZONE PROPERTIES**

| Data 4  | zone status        |
|---------|--------------------|
| Data 5  | zone loop reading  |
| Data 6  | zone type (0-87)   |
| Data 7  | zone area (1-8)    |
| Data 8  | zone options (0-7) |
| Data 9  | zone name          |
|         |                    |
| Data 24 | zone name          |

For description of zone status, see ZONE STATUS in this document.

The available zone types are as follows:

| Zone Type | Description                        |  |
|-----------|------------------------------------|--|
| 0         | Entry/Exit                         |  |
| 1         | Perimeter                          |  |
| 2         | Night Interior                     |  |
| 3         | Away Interior                      |  |
| 4         | Double Entry Delay                 |  |
| 5         | Quadruple Entry Delay              |  |
| 6         | Latching Perimeter                 |  |
| 7         | Latching Night Interior            |  |
| 8         | Latching Away Interior             |  |
| 16        | Panic                              |  |
| 17        | Police Emergency                   |  |
| 18        | Duress                             |  |
| 19        | Tamper                             |  |
| 20        | Latching Tamper                    |  |
| 32        | Fire                               |  |
| 33        | Fire Emergency                     |  |
| 34        | Gas Alarm                          |  |
| 48        | Auxiliary Emergency                |  |
| 49        | Trouble                            |  |
| 54        | Freeze                             |  |
| 55        | Water                              |  |
| 56        | Fire Tamper                        |  |
| 64        | Auxiliary                          |  |
| 65        | Keyswitch Input                    |  |
| 80        | Programmable Energy Saver Module   |  |
| 81        | Outdoor Temperature                |  |
| 82        | Temperature                        |  |
| 83        | Temperature Alarm                  |  |
| 84        | Humidity                           |  |
| 85        | Extended Range Outdoor Temperature |  |
| 86        | Extended Range Temperature         |  |
| 87        | Extended Range Temperature Alarm   |  |

The available zone options are as follows:

| Zone Options     | 0  | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|------------------|----|-----|-----|-----|-----|-----|-----|-----|
| Cross Zoning     | No | Yes | No  | Yes | No  | Yes | No  | Yes |
| Swinger Shutdown | No | No  | Yes | Yes | No  | No  | Yes | Yes |
| Dial Out Delay   | No | No  | No  | No  | Yes | Yes | Yes | Yes |

### **UNIT PROPERTIES**

| Data 4  | unit state        |
|---------|-------------------|
| Data 5  | unit time (MSB)   |
| Data 6  | unit time (LSB)   |
| Data 7  | unit type (0-255) |
| Data 8  | unit name         |
|         |                   |
| Data 20 | unit name         |

For description of unit status, see UNIT STATUS in this document.

The unit time is the number of seconds remaining for the last command.

The available unit types are as follows:

| Unit Type | Description  |
|-----------|--------------|
| 1         | Standard     |
| 2         | Extended     |
| 3         | Compose      |
| 4         | UPB          |
| 5         | HLC Room     |
| 6         | HLC Load     |
| 7         | Lumina Mode  |
| 8         | RadioRA      |
| 9         | CentraLite   |
| 10        | ViziaRF Room |
| 11        | ViziaRF Load |
| 12        | Flag         |
| 13        | Output       |
| 14        | Audio Zone   |
| 15        | Audio Source |

### **BUTTON PROPERTIES**

Data 4 button name

Data 16 button name

### CODE PROPERTIES

Data 4 code name

Data 16 code name

### AREA PROPERTIES

| Data 4  | area mode (0-255)   |
|---------|---------------------|
| Data 5  | area alarms (0-255) |
| Data 6  | entry timer         |
| Data 7  | exit timer          |
| Data 8  | enabled (0-1)       |
| Data 9  | exit delay (0-255)  |
| Data 10 | entry delay (0-255) |
| Data 11 | area name           |
|         |                     |
| Data 23 | area name           |
|         |                     |

For description of area mode and area alarms, see AREA STATUS in this document.

The entry timer and exit timer is the number of seconds remaining for the respective timer. The exit delay and entry delay is the configuration setting for the respective delay.

If AREA PROPERTIES are requested for an area that is configured in the HAI controller, the enabled byte will be set to 1; if an area is not configured in the HAI controller, the enabled byte will be set to 0.

### THERMOSTAT PROPERTIES

| Data 4  | communicating (0-1) |
|---------|---------------------|
| Data 5  | temperature         |
| Data 6  | heat setpoint       |
| Data 7  | cool setpoint       |
| Data 8  | mode                |
| Data 9  | fan (0-1)           |
| Data 10 | hold (0-1)          |
| Data 11 | thermostat type     |
| Data 12 | thermostat name     |
|         |                     |
| Data 24 | thermostat name     |

For description of communicating, temperature, heat and cool setpoints, mode, fan and hold status, see THERMOSTAT STATUS in this document.

The temperatures are reported in the Omni temperature format (see Appendix C).

The available thermostat types are as follows:

| Thermostat Type | Description    |
|-----------------|----------------|
| 0               | Not Used       |
| 1               | Auto Heat/Cool |
| 2               | Heat/Cool      |
| 3               | Heat Only      |
| 4               | Cool Only      |
| 5               | Setpoint Only  |

### MESSAGE PROPERTIES

Data 4 message name

. . .

Data 19 message name

### AUXILIARY SENSOR PROPERTIES

| S                    |
|----------------------|
| perature or humidity |
| t                    |
| nt                   |
|                      |
| e                    |
|                      |
| e                    |
|                      |

The temperatures are reported in the Omni temperature format (see Appendix C).

The available sensor types are as follows:

| Sensor Type | Description                        |
|-------------|------------------------------------|
| 80          | Programmable Energy Saver Module   |
| 81          | Outdoor Temperature                |
| 82          | Temperature                        |
| 83          | Temperature Alarm                  |
| 84          | Humidity                           |
| 85          | Extended Range Outdoor Temperature |
| 86          | Extended Range Temperature         |
| 87          | Extended Range Temperature Alarm   |

### AUDIO SOURCE PROPERTIES

Data 4 source name

• • •

Data 16 source name

### AUDIO ZONE PROPERTIES

| Data 4 | on/off (0-1)   |
|--------|----------------|
| Data 5 | source (1-n)   |
| Data 6 | volume (0-100) |
| Data 7 | mute (0-1)     |
| Data 8 | zone name      |
|        |                |

Data 20 zone name

### **OBJECT STATUS**

This message is sent by the HAI controller in reply to an OBJECT STATUS message. The HAI controller reports the status for the specified object(s).

### **ZONE STATUS**

The controller reports the status of a zone object or group of zone objects. The status reported for each zone includes the zone number, current condition of the zone (secure, not ready, or trouble), the latched alarm status for the zone, whether the zone is armed, whether the zone has had any trouble, and the current analog loop reading for the zone.

| Start character | 0x21                              |
|-----------------|-----------------------------------|
| Message length  | (4 * number of zone) + 2          |
| Message type    | 0x23                              |
| Data 1          | 0x01                              |
| Data 2          | zone number for first zone (MSB)  |
| Data 3          | zone number for first zone (LSB)  |
| Data 4          | zone status for first zone        |
| Data 5          | zone loop reading for first zone  |
| Data 6          | zone number for second zone (MSB) |
| Data 7          | zone number for second zone (LSB) |
| Data 8          | zone status for second zone       |
| Data 9          | zone loop reading for second zone |
|                 |                                   |
| Data n-3        | zone number for last zone (MSB)   |
| Data n-2        | zone number for last zone (LSB)   |
| Data n-1        | zone status for last zone         |
| Data n          | zone loop reading for last zone   |
| CRC 1           | varies                            |
| CRC 2           | varies                            |
|                 |                                   |

The zone status for a zone is packed into a single byte. Bits 0 and 1 indicate the zone's current condition:

| 0 0 Secure<br>0 1 Not ready<br>1 0 Trouble | Bit 1 | Bit 0 | Current Condition |
|--------------------------------------------|-------|-------|-------------------|
| <b>3</b>                                   | 0     | 0     |                   |
| 1 0 Trouble                                | 0     | 1     | Not ready         |
| 1 0 1104010                                | 1     | 0     | Trouble           |

Bits 2 and 3 indicate the latched alarm status for the zone:

| Bit 3 | Bit 2 | Latched Alarm Status          |
|-------|-------|-------------------------------|
| 0     | 0     | Secure                        |
| 0     | 1     | Tripped                       |
| 1     | 0     | Reset, but previously tripped |

Bits 4 and 5 indicate the arming status for the zone:

| Bit 5 | Bit 4 | Arming Status      |
|-------|-------|--------------------|
| 0     | 0     | Disarmed           |
| 0     | 1     | Armed              |
| 1     | 0     | Bypassed by user   |
| 1     | 1     | Bypassed by system |

Bit 6 is set if a trouble condition has occurred that has not been acknowledged by the user. The current condition of the zone will indicate whether the zone currently has a trouble condition. If the zone does not currently have a trouble condition, but bit 6 is set, it indicates that the zone has previously had a trouble condition that has not yet been acknowledged.

### **UNIT STATUS**

The controller reports the status of a control unit object or group of control unit objects. The status reported for each unit includes the unit number, the unit's current condition, and any time remaining (specified in seconds) on a timed command.

| Start character | 0x21                              |
|-----------------|-----------------------------------|
| Message length  | (5 * number of units) + 2         |
| Message type    | 0x23                              |
| Data 1          | 0x02                              |
| Data 2          | unit number for first unit (MSB)  |
| Data 3          | unit number for first unit (LSB)  |
| Data 4          | unit status for first unit        |
| Data 5          | high byte of time for first unit  |
| Data 6          | low byte of time for first unit   |
| Data 7          | unit number for second unit (MSB) |
| Data 8          | unit number for second unit (LSB) |
| Data 9          | unit status for second unit       |
| Data 10         | high byte of time for second unit |
| Data 11         | low byte of time for second unit  |
|                 |                                   |
| Data n-4        | unit number for last unit (MSB)   |
| Data n-3        | unit number for last unit (LSB)   |
| Data n-2        | unit status for last unit         |
| Data n-1        | high byte of time for last unit   |
| Data n          | low byte of time for last unit    |
| CRC 1           | varies                            |
| CRC 2           | varies                            |
|                 |                                   |

The current condition of the unit depends on the type of the unit.

For X-10 units, the possible conditions are:

| 0       | Last commanded off                         |
|---------|--------------------------------------------|
| 1       | Last commanded on                          |
| 17-25   | Last commanded dim 1-9, respectively       |
| 33-41   | Last commanded brighten 1-9, respectively  |
| 100-200 | Last commanded level 0%-100%, respectively |
|         |                                            |

For Lightolier Compose PLC units:

| 0     | Off                                       |
|-------|-------------------------------------------|
| 1     | On                                        |
| 2-13  | Scene A-L, respectively                   |
| 17-25 | Last commanded dim 1-9, respectively      |
| 33-41 | Last commanded brighten 1-9, respectively |

For Advanced Lighting Control (ALC) relay modules:

| 0 | Off |
|---|-----|
| 1 | On  |

For Advanced Lighting Control (ALC) dimmer modules:

0 Off 1 On

100-200 Level 0%-100%, respectively

For Universal Powerline Bus (UPB) units:

0 Off 1 On

100-200 Level 0%-100%, respectively

For voltage outputs:

0 Off 1 On

For flags:

0 Off Non-zero On

For counters:

0-255 Counter value

### AREA STATUS

The controller reports the status of an area object or group of area objects. The status reported for each area includes the area number, mode, alarms, entry timer, and exit timer.

Start character 0x21

Message length (6 \* number of areas) + 2

Message type 0x23 Data 1 0x05

Data 2 area number for first area (MSB)
Data 3 area number for first area (LSB)

Data 4 area mode for first area
Data 5 area alarms for first area
Data 6 entry timer for first area
Data 7 exit timer for first area

Data 8 area number for second area (MSB)
Data 9 area number for second area (LSB)

Data 10 area mode for second area
Data 11 area alarms for first area
Data 12 entry timer for second area
Data 13 exit timer for second area

. . .

Data n-5 area number for last area (MSB)
Data n-4 area number for last area (LSB)

Data n-3 area mode for last area
Data n-2 area alarms for last area
Data n-1 entry timer for last area
Data n exit timer for last area

CRC 1 varies CRC 2 varies

### For HAI Omni series controllers, the security mode for an area is as follows:

| 0 | Off           |
|---|---------------|
| 1 | Day           |
| 2 | Night         |
| 3 | Away          |
| 4 | Vacation      |
| 5 | Day instant   |
| 6 | Night delayed |

Bit 3 of the security mode byte will be set during the arming exit delay, resulting in the following additional security modes:

| 9  | Arming day           |
|----|----------------------|
| 10 | Arming night         |
| 11 | Arming away          |
| 12 | Arming vacation      |
| 13 | Arming day instant   |
| 14 | Arming night delayed |

The bits in the area alarm status bytes are shown below. The corresponding bit is set if the condition is true.

| 0 | Burglary alarm    |
|---|-------------------|
| 1 | Fire alarm        |
| 2 | Gas alarm         |
| 3 | Auxiliary alarm   |
| 4 | Freeze alarm      |
| 5 | Water alarm       |
| 6 | Duress alarm      |
| 7 | Temperature alarm |
|   |                   |

### For HAI Lumina series controllers, the mode is as follows:

| 1 | Home     |
|---|----------|
| 2 | Sleep    |
| 3 | Away     |
| 4 | Vacation |
| 5 | Party    |
| 6 | Special  |

Bit 3 of the security mode byte will be set during the mode change delay, resulting in the following additional security modes:

| 9  | Setting home     |
|----|------------------|
| 10 | Setting Sleep    |
| 11 | Setting away     |
| 12 | Setting vacation |
| 13 | Setting party    |
| 14 | Setting special  |

The bits in the area alarm status bytes are shown below. The corresponding bit is set if the condition is true.

| 4 | Freeze alarm      |
|---|-------------------|
| 5 | Water alarm       |
| 7 | Temperature alarm |

### THERMOSTAT STATUS

Start character

The controller reports the status of a thermostat object or group of thermostat objects. The status reported for each thermostat includes the thermostat number, whether the thermostat is communicating with the controller, whether a freeze condition has been detected by the thermostat, the current temperature, the heat and cool setpoints, the system mode, the fan mode, and whether the thermostat has been placed in hold mode.

| Message length | (9 * number of thermostats) + 2               |
|----------------|-----------------------------------------------|
| Message type   | 0x23                                          |
| Data 1         | 0x06                                          |
| Data 2         | thermostat number for first thermostat (MSB)  |
| Data 3         | thermostat number for first thermostat (LSB)  |
| Data 4         | status byte for first thermostat              |
| Data 5         | current temperature for first thermostat      |
| Data 6         | heat setpoint for first thermostat            |
| Data 7         | cool setpoint for first thermostat            |
| Data 8         | system mode for first thermostat              |
| Data 9         | fan mode for first thermostat                 |
| Data 10        | hold status for first thermostat              |
| Data 11        | thermostat number for second thermostat (MSB) |
| Data 12        | thermostat number for second thermostat (LSB) |
| Data 13        | status byte for second thermostat             |
| Data 14        | current temperature for second thermostat     |
| Data 15        | heat setpoint for second thermostat           |
| Data 16        | cool setpoint for second thermostat           |
| Data 17        | system mode for second thermostat             |
| Data 18        | fan mode for second thermostat                |
| Data 19        | hold status for second thermostat             |
|                |                                               |
| Data n-8       | thermostat number for last thermostat (MSB)   |
| Data n-7       | thermostat number for last thermostat (LSB)   |
| Data n-6       | status byte for last thermostat               |
| Data n-5       | current temperature for last thermostat       |
| Data n-4       | heat setpoint for last thermostat             |
| Data n-3       | cool setpoint for last thermostat             |
| Data n-2       | system mode for last thermostat               |
| Data n-1       | fan mode for last thermostat                  |
| Data n         | hold status for last thermostat               |
| CRC 1          | varies                                        |
| CRC 2          | varies                                        |
|                |                                               |

0x21

The bits in the thermostat status byte are shown below. The corresponding bit is set if the condition is true.

Bit 0 Communications failure

Bit 1 Freeze alarm

The temperatures are reported in the Omni temperature format (see Appendix C).

The system mode is as follows:

| 0 | Off            |
|---|----------------|
| 1 | Heat           |
| 2 | Cool           |
| 3 | Auto           |
| 4 | Emergency heat |

The fan mode is as follows:

| 0 | Auto |
|---|------|
| 1 | On   |

The hold status is non-zero if the thermostat is in hold mode.

### MESSAGE STATUS

The controller reports the status of a displayed text message object or a group of displayed text message objects. The status reported for each message includes the message number, whether the message is currently being displayed, and whether the displayed message has not been acknowledged.

| Start character | 0x21                                    |
|-----------------|-----------------------------------------|
| Message length  | (3 * number of messages) + 2            |
| Message type    | 0x23                                    |
| Data 1          | 0x07                                    |
| Data 2          | message number for first message (MSB)  |
| Data 3          | message number for first message (LSB)  |
| Data 4          | status byte for first message           |
| Data 5          | message number for second message (MSB) |
| Data 6          | message number for second message (LSB) |
| Data 7          | status byte for second message          |
| •••             |                                         |
| Data n-2        | message number for last message (MSB)   |
| Data n-1        | message number for last message (LSB)   |
| Data n          | status byte for last message            |
| CRC 1           | varies                                  |
| CRC 2           | varies                                  |
|                 |                                         |

The status bytes are defined as follows:

| 0 | Off (message in not being displayed)                               |
|---|--------------------------------------------------------------------|
| 1 | Displayed (the message is currently being displayed)               |
| 2 | Not acknowledged (the displayed message has not been acknowledged) |

### AUXILIARY SENSOR STATUS

The controller reports the status of an auxiliary sensor object or a group of auxiliary sensor objects. The status reported for each auxiliary sensor includes the auxiliary sensor number, the output status for each Programmable Energy Saver Module (PESM), the current temperature or humidity reading, and the low and high setpoints.

| Start character | 0x21                                                        |
|-----------------|-------------------------------------------------------------|
| Message length  | (6 * number of auxiliary sensors) + 2                       |
| Message type    | 0x23                                                        |
| Data 1          | 0x08                                                        |
| Data 2          | auxiliary sensor number for first auxiliary sensor (MSB)    |
| Data 3          | auxiliary sensor number for first auxiliary sensor (LSB)    |
| Data 4          | output status for first auxiliary sensor                    |
| Data 5          | current temperature or humidity for first auxiliary sensor  |
| Data 6          | low/heat setpoint for first auxiliary sensor                |
| Data 7          | high/cool setpoint for first auxiliary sensor               |
| Data 8          | auxiliary sensor number for second auxiliary sensor (MSB)   |
| Data 9          | auxiliary sensor number for second auxiliary sensor (LSB)   |
| Data 10         | output status for second auxiliary sensor                   |
| Data 11         | current temperature or humidity for second auxiliary sensor |
| Data 12         | low/heat setpoint for second auxiliary sensor               |
| Data 13         | high/cool setpoint for second auxiliary sensor              |
|                 |                                                             |
| Data n-5        | auxiliary sensor number for last auxiliary sensor (MSB)     |
| Data n-4        | auxiliary sensor number for last auxiliary sensor (LSB)     |
| Data n-3        | output status for last auxiliary sensor                     |
| Data n-2        | current temperature or humidity for last auxiliary sensor   |
| Data n-1        | low/heat setpoint for last auxiliary sensor                 |
| Data n          | high/cool setpoint for last auxiliary sensor                |
| CRC 1           | varies                                                      |
| CRC 2           | varies                                                      |
|                 |                                                             |

The output status is non-zero if the output is energized.

The temperatures are reported in the Omni temperature format (see Appendix C).

### **AUDIO ZONE STATUS**

The controller reports the status of an audio zone object or a group of audio zone objects. The status reported for each audio zone includes the audio zone number, on/off status of the zone, the selected source for the zone, the volume, and whether the zone is muted.

| Start character | 0x21                                          |
|-----------------|-----------------------------------------------|
| Message length  | (6 * number of audio zones) + 2               |
| Message type    | 0x23                                          |
| Data 1          | 0x0A                                          |
| Data 2          | audio zone number for first audio zone (MSB)  |
| Data 3          | audio zone number for first audio zone (LSB)  |
| Data 4          | power on/off for first audio zone (0-1)       |
| Data 5          | selected source for first audio zone (1-n)    |
| Data 6          | volume for first audio zone (0-100)           |
| Data 7          | mute status for first audio zone (0-1)        |
| Data 8          | audio zone number for second audio zone (MSB  |
| Data 9          | audio zone number for second audio zone (LSB) |
| Data 10         | power on/off for second audio zone (0-1)      |
| Data 11         | selected source for second audio zone (1-n)   |
| Data 12         | volume for second audio zone (0-100)          |
| Data 13         | mute status for second audio zone (0-1)       |
|                 |                                               |
| Data n-5        | audio zone number for last audio zone (MSB)   |
| Data n-4        | audio zone number for last audio zone (LSB)   |
| Data n-3        | power on/off for last audio zone (0-1)        |
| Data n-2        | selected source for last audio zone (1-n)     |
| Data n-1        | volume for last audio zone (0-100)            |
| Data n          | mute status for last audio zone (0-1)         |
| CRC 1           | varies                                        |
| CRC 2           | varies                                        |
|                 |                                               |

### EXPANSION ENCLOSURE STATUS

The controller reports the status of an expansion enclosure object or a group of expansion enclosure objects. The status reported for each expansion enclosure includes the expansion enclosure number, whether the thermostat is communicating with the controller, and the battery reading.

| Start character Message length Message type Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 | 0x21 (4 * number of expansion enclosures) + 2 0x23 0x0B address number for first expansion enclosure (MSB) address number for first expansion enclosure (LSB) communications status for first expansion enclosure (0-1) battery reading for first expansion enclosure (0-255) address number for second expansion enclosure (MSB) address number for second expansion enclosure (LSB) |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data 8<br>Data 9                                                                             | communications status for second expansion enclosure (0-1) battery reading for second expansion enclosure (0-255)                                                                                                                                                                                                                                                                     |
| Data n-3 Data n-2 Data n-1 Data n CRC 1 CRC 2                                                | address number for last expansion enclosure (MSB) address number for last expansion enclosure (LSB) communications status for last expansion enclosure (0-1) battery reading for last expansion enclosure (0-255) varies varies                                                                                                                                                       |

#### AUDIO SOURCE STATUS

This message is sent by the HAI controller in response to a REQUEST AUDIO SOURCE STATUS message.

Start character 0x21

Message length source data length (exclusive of terminating zero) + 7

Message type 0x31

Data 1 source number (MSB)
Data 1 source number (LSB)
Data 2 sequence number (0-255)

Data 3 position (1-6) Data 4 field ID

Data 5 first byte of source data
Data 6 second byte of source data

•••

Data n-1 last byte of source data
Data n terminating zero

CRC 1 varies CRC 2 varies

### ZONE READY STATUS

This message is sent in response to a REQUEST ZONE READY STATUS message. The secure/not ready statuses for eight zones are packed into one message byte. The status of the lower numbered zone is indicated by bit 7. Lower order bits indicate the statuses of the higher numbered zones. The bit corresponding to a zone is set if that zone is not ready.

Start character 0x21

Message length number of data bytes + 1

Message Type 0x39

Data 1 status of first 8 zones
Data 2 status of second 8 zones

..

Data n status of last 8 zones

CRC 1 varies CRC 2 varies

### CONNECTED SECURITY SYSTEM STATUS

This message is sent in response to a REQUEST CONNECTED SECURITY SYSTEM STATUS message.

Start character 0x21

Message length number of data bytes + 1

Message Type 0x2E

Data 1 mode in partition 1
Data 2 status of partition 1
Data 3 mode in partition 2
Data 4 status of partition 2

. . .

Data 15 mode in partition 8 Data 16 status of partition 8

CRC 1 varies CRC 2 varies

### **EVENT LOG MESSAGES**

The HAI controller maintains an event log that records a time stamped listing of significant controller events, such as when the security system is armed/disarmed, alarm activations, and trouble conditions. The event log can store a fixed number of events. Once the event log is full, logging a new event will cause the oldest event to be lost.

- Upload event record
- Event log data

### UPLOAD EVENT RECORD

The event number specifies the event record that is being requested (0-65535). The event number is used in conjunction with the relative direction (offset) value to determine which event in the list will be sent. A special case event number of 0 is used to receive the most recent or oldest event. If the event number is 0 and the relative direction is -1, the controller will return the most recent event (along with the event number). The returned event number along with the relative direction of -1 can be used to request the next most recent event. If the event number is 0 and the relative direction is 1, the controller will return the oldest event. The returned event number along with the relative direction of 1 can be used to request the second oldest event.

If the offset is 0, the controller will return the specified event record. If the offset is -1, the controller will return the event record before the specified event number. If the offset is 1, the controller will return the event record after the specified event number.

| Start character | 0x21                          |
|-----------------|-------------------------------|
| Message length  | 0x04                          |
| Message type    | 0x24                          |
| Data 1          | event number (MSB)            |
| Data 2          | event number (LSB)            |
| Data 3          | relative direction (-1, 0, 1) |
| CRC 1           | varies                        |
| CRC 2           | varies                        |

### EVENT LOG DATA

| Start character | 0x21                     |
|-----------------|--------------------------|
| Message length  | 0x0C                     |
| Message type    | 0x25                     |
| Data 1          | event number (MSB)       |
| Data 2          | event number (LSB)       |
| Data 3          | time/date valid          |
| Data 4          | month (1-12)             |
| Data 5          | day (1-31)               |
| Data 6          | hour (0-23)              |
| Data 7          | minute (0-59)            |
| Data 8          | event type               |
| Data 9          | parameter 1              |
| Data 10         | high byte of parameter 2 |
| Data 11         | low byte of parameter 2  |
| CRC 1           | varies                   |
| CRC 2           | varies                   |

The highest numbered event is the most recent event. When the event number counter (Data 1 and Data 2) reaches 65535, when the next event occurs, the counter rolls over to 1.

The month, day, hour, and minute specify the time that the event occurred. The time/date valid flag is zero if the controller time was not set when the event occurred. In this case, the month, day, hour, and minute fields do not contain valid data and should not be used. The time/date valid flag is non-zero when the time has been properly set in the controller.

The event, parameter 1, and parameter 2 identify the specific event that has occurred. The possible events are shown in the "Event Log Event Types" tables. When a security code is specified, the value is the user code number rather than the actual four-digit security code.

In addition to the user codes, the following security codes can be reported:

- 251 Duress code
- 252 Keyswitch
- 253 Ouick arm
- 254 PC Access
- 255 Programmed

### LUMINA SERIES EVENT LOG EVENT TYPES

| <b>Event Type</b> | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                      |
|-------------------|-------------------|-------------------|----------------------------------|
| 48+m              | 1-n               | 0-n               | set mode m with code P1          |
|                   |                   |                   | m = mode:                        |
|                   |                   |                   | 1 = home mode                    |
|                   |                   |                   | 2 = sleep mode                   |
|                   |                   |                   | 3 = away mode                    |
|                   |                   |                   | 4 = vacation mode                |
|                   |                   |                   | 5 = party mode                   |
|                   |                   |                   | 6 = special mode                 |
| 128               |                   | 1-n               | Zone P2 tripped                  |
| 129               |                   | 1-n               | zone P2 trouble                  |
| 130               | 1-n               |                   | remote phone access with code P1 |
| 131               |                   |                   | remote phone lockout             |
| 133               |                   | 1-n               | zone P2 trouble cleared          |
| 134               | 1-n               |                   | PC access with code P1           |
| 135               | 1-n               | 1                 | alarm P1 activated               |
|                   |                   |                   | 5 = freeze                       |
|                   |                   |                   | 6 = water                        |
|                   |                   |                   | 8 = temperature                  |
| 136               | 1-n               | 1                 | alarm P1 reset                   |
|                   |                   |                   | 5 = freeze                       |
|                   |                   |                   | 6 = water                        |
|                   |                   |                   | 8 = temperature                  |
| 137               |                   |                   | system reset                     |
| 138               |                   | 1-n               | message P2 logged                |

### OMNI SERIES EVENT LOG EVENT TYPES

| <b>Event Type</b> | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                             |
|-------------------|-------------------|-------------------|-----------------------------------------|
| 4                 | 1-n               | 1-n               | zone P2 bypassed with code P1           |
| 5                 | 1-n               | 1-n               | zone P2 restored with code P1           |
| 6                 | 1-n               | 0-n               | all area P2 zones restored with code P1 |
|                   |                   |                   | P2 = 0 means all areas/zones            |
| 48+m              | 1-n               | 0-n               | area P2 armed in mode m with code P1    |
|                   |                   |                   | P2 = 0 means all areas                  |
|                   |                   |                   | m = security mode:                      |
|                   |                   |                   | 0 = disarm                              |
|                   |                   |                   | 1 = day mode                            |
|                   |                   |                   | 2 = night mode                          |
|                   |                   |                   | 3 = away mode                           |
|                   |                   |                   | 4 = vacation mode                       |
|                   |                   |                   | 5 = day instant mode                    |
|                   |                   |                   | 6 = night delayed mode                  |
| 128               |                   | 1-n               | zone P2 tripped                         |
| 129               |                   | 1-n               | zone P2 trouble                         |
| 130               | 1-n               |                   | remote phone access with code P1        |
| 131               |                   |                   | remote phone lockout                    |
| 132               |                   | 1-n               | zone P2 auto bypassed                   |
| 133               |                   | 1-n               | zone P2 trouble cleared                 |
| 134               | 1-n               |                   | PC access with code P1                  |
| 135               | 1-n               | 1-n               | alarm P1 activated in area P2           |
|                   |                   |                   | 1 = burglary                            |
|                   |                   |                   | 2 = fire                                |
|                   |                   |                   | 3 = gas                                 |
|                   |                   |                   | 4 = auxiliary                           |
|                   |                   |                   | 5 = freeze                              |
|                   |                   |                   | 6 = water                               |
|                   |                   |                   | 7 = duress                              |
|                   |                   |                   | 8 = temperature                         |
| 136               | 1-n               | 1-n               | alarm P1 reset in area P2               |
|                   |                   |                   | 1 = burglary                            |
|                   |                   |                   | 2 = fire                                |
|                   |                   |                   | 3 = gas                                 |
|                   |                   |                   | 4 = auxiliary                           |
|                   |                   |                   | 5 = freeze                              |
|                   |                   |                   | 6 = water                               |
|                   |                   |                   | 7 = duress                              |
| 127               |                   |                   | 8 = temperature                         |
| 137               |                   | 1                 | system reset                            |
| 138               |                   | 1-n               | message P2 logged                       |

### NAME MESSAGES

Display names for controller objects (zones, units, buttons, codes, areas, thermostats, messages, auxiliary sensors, audio zones, or audio sources) may be uploaded from and downloaded to the HAI controller.

- Upload names
- Name data
- Clear names
- Download names

### UPLOAD NAMES

To upload names from the HAI controller, send an UPLOAD NAMES message with the object type and object number to the HAI controller. The controller will then send a NAME DATA message.

Each NAME DATA message contains the name of a single object. If no name has been entered in the controller for the specified object, the controller will respond with an END OF DATA message rather than a NAME DATA message in reply to the UPLOAD NAMES message.

| Start character | 0x21        |
|-----------------|-------------|
| Message length  | 0x04        |
| Message type    | 0x0D        |
| Data 1          | object type |

Data 2 object number (MSB)
Data 3 object number (LSB)

CRC 1 varies CRC 2 varies

#### NAME DATA

Start character 0x21

Message length (maximum name length) + 5

Message type 0x0E Data 1 object type

Data 2 object number (MSB)
Data 3 object number (LSB)
Data 4 first byte of name data
Data 5 second byte of name data

• • •

Data n last byte of name data

CRC 1 varies CRC 2 varies

The object name data specifies the name for the respective object. Each name consists of one or more printable ASCII characters, followed by a terminating zero. Zone and message names can be up to 15 characters long, exclusive of the terminating zero. All other names may be up to 12 characters long. Names are always transferred with a fixed number of data bytes for each name type. Thus, a zone name will always be sent as 16 bytes, no matter how long the name really is. The terminating zero indicates the actual end of the name. Data bytes following the terminating zero may be filled with any value.

The object type and object number specify what is being named. The object type identifies whether the name is for a zone, unit, button, code, area, thermostat, message, auxiliary sensor, audio zone, or audio source. The object number identifies the specific object to be named.

Listed below are the object type, maximum name length, and maximum number of each object type:

| OBJECT           | ТҮРЕ | LENGTH | NUMBER<br>(Omni IIe) | NUMBER<br>(OmniPro II) | NUMBER<br>(Lumina) | NUMBER<br>(Lumina Pro) |
|------------------|------|--------|----------------------|------------------------|--------------------|------------------------|
| Zone             | 1    | 15     | 48                   | 176                    | 48                 | 176                    |
| Unit             | 2    | 12     | 128                  | 511                    | 128                | 511                    |
| Button           | 3    | 12     | 64                   | 128                    | 64                 | 128                    |
| Code             | 4    | 12     | 16                   | 99                     | 16                 | 99                     |
| Area             | 5    | 12     | 2                    | 8                      | 1                  | 1                      |
| Thermostat       | 6    | 12     | 4                    | 64                     | 4                  | 64                     |
| Message          | 7    | 15     | 64                   | 128                    | 64                 | 128                    |
| Auxiliary Sensor | 8    | 15     | 48                   | 176                    | 48                 | 176                    |
| Audio Source     | 9    | 12     | 6                    | 8                      | 6                  | 8                      |
| Audio Zone       | 10   | 12     | 8                    | 36                     | 8                  | 36                     |

#### **CLEAR NAMES**

If a group of names will be downloaded to the HAI controller, first send the CLEAR NAMES message to the controller. This instructs the controller to clear the names of all objects. This is essential to ensure that object names that have been removed, are cleared from the controller's memory.

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x01 |
| Message type    | 0x0B |
| Data            | none |
| CRC 1           | 0x40 |
| CRC 2           | 0x57 |

#### DOWNLOAD NAMES

To download names from the HAI controller, send a DOWNLOAD NAMES message with the object type, object name, and the name data. Each DOWNLOAD NAMES message contains the name of a single object.

| Start character | 0x21                      |
|-----------------|---------------------------|
| Message length  | (maximum name length) + 5 |
| Message type    | 0x0C                      |
| Data 1          | object type               |
| Data 2          | object number (MSB)       |
| Data 3          | object number (LSB)       |
| Data 4          | first byte of name data   |
| Data 5          | second byte of name data  |
| •••             |                           |
| Data n          | last byte of name data    |
| CRC 1           | varies                    |
| CRC 2           | varies                    |
|                 |                           |

#### **VOICE NAME MESSAGES**

Voice names for controller objects (a zone, unit, button, code, area, thermostat, or message) may be uploaded from and downloaded to the HAI controller.

- Upload voice names
- Voice name data
- Clear Voice names
- Download voice names

#### UPLOAD VOICE NAMES

To upload voice names from the HAI controller, send an UPLOAD VOICE NAMES message with the object type and object number to the HAI controller. The controller will then send a VOICE NAME DATA message.

Each VOICE NAME DATA message contains the voice name of a single object. If no voice name has been entered in the controller for the specified object, the controller will respond with an END OF DATA message rather than a VOICE NAME DATA message in reply to the UPLOAD NAMES message.

| Start character | 0x21       |
|-----------------|------------|
| Message Length  | 0x04       |
| Message Type    | 0x11       |
| Data 1          | object typ |

Data 2 object number (MSB)
Data 3 object number (LSB)

CRC 1 varies CRC 2 varies

#### VOICE NAME DATA

Start character 0x21

Message length ((phrases per name + 1)\*(size of each phrase)) + 4

Message type 0x12
Data 1 object type

Data 2 object number (MSB)
Data 3 object number (LSB)

Data 4 high byte of first phrase number

Data 5 low byte of first phrase number or second phrase number

...

Data n last byte of name

CRC 1 varies CRC 2 varies

The VOICE NAME DATA message specifies the voice name for a single item. Each voice name consists of one or more phrase numbers, followed by a terminating phrase number of zero. Voice names for Omni IIe, OmniPro II, Lumina, and Lumina Pro can consist of six phrase numbers, exclusive of the terminating phrase. Phrase numbers for Omni IIe, OmniPro II, Lumina, and Lumina Pro are two bytes long. Voice names are always transferred with a fixed number of data bytes for each voice name type. Thus, a voice name for an OmniPro II will always be sent as 14 bytes, no matter how long the voice name really is. The terminating phrase number of zero indicates the actual end of the name. Data bytes following the terminating zero may be filled with any value.

The object type and object number specify what is being named. The object type identifies whether the voice name is for a zone, unit, button, code, area, thermostat, or message. The object number identifies the specific zone, unit, button, code, area, thermostat, or message.

Listed below are the object type, number of phrases, size of each phrase number, and maximum number of each type of voice name:

| NAME       | ТҮРЕ | PHRASES | SIZE | NUMBER<br>(Omni IIe) | NUMBER<br>(OmniPro II) | NUMBER<br>(Lumina) | NUMBER<br>(Lumina Pro) |
|------------|------|---------|------|----------------------|------------------------|--------------------|------------------------|
| Zone       | 1    | 6       | 2    | 48                   | 176                    | 48                 | 176                    |
| Unit       | 2    | 6       | 2    | 128                  | 511                    | 128                | 511                    |
| Button     | 3    | 6       | 2    | 64                   | 128                    | 64                 | 128                    |
| Code       | 4    | 6       | 2    | 16                   | 99                     | 16                 | 99                     |
| Area       | 5    | 6       | 2    | 2                    | 8                      | 0                  | 0                      |
| Thermostat | 6    | 6       | 2    | 4                    | 64                     | 4                  | 64                     |
| Message    | 7    | 6       | 2    | 64                   | 128                    | 64                 | 128                    |

#### **CLEAR VOICE NAMES**

If a group of voice names will be downloaded to the HAI controller, first send the CLEAR VOICE NAMES message to the controller. This instructs the controller to clear the voice names of all objects. This is essential to ensure that object voice names that have been removed, are cleared from the controller's memory.

| Start Character | 0x21 |
|-----------------|------|
| Message Length  | 0x01 |
| Message Type    | 0x0F |
| Data            | none |
| CRC 1           | 0x41 |
| CRC 2           | 0x94 |

#### DOWNLOAD VOICE NAMES

To download voice names from the HAI controller, send a DOWNLOAD VOICE NAMES message with the object type, object name, and the voice name data. Each DOWNLOAD VOICE NAMES message contains the voice name of a single object.

| Start character | 0x21                                                    |
|-----------------|---------------------------------------------------------|
| Message length  | ((phrases per name + 1)*(size of each phrase)) + 4      |
| Message type    | 0x10                                                    |
| Data 1          | object type                                             |
| Data 2          | object number (MSB)                                     |
| Data 3          | object number (LSB)                                     |
| Data 4          | high byte of first phrase number                        |
| Data 5          | low byte of first phrase number or second phrase number |
|                 |                                                         |
| Data n          | last byte of name                                       |
| CRC 1           | varies                                                  |
| CRC 2           | varies                                                  |

#### **COMMAND MESSAGES**

Command message are used to send immediate control commands to an HAI controller or connected security system.

- Controller commands
- Connected security system commands
- Set time command
- Activate keypad emergency

## CONTROLLER COMMAND

The CONTROLLER COMMAND message is used to send an immediate control command to the HAI controller. Commands are provided to control lights, appliances, temperatures, security, messaging, and audio. Each command follows the same format: a single byte command, followed by a single byte parameter, and then a two byte secondary parameter. The command message is formatted as follows:

| Start character | 0x21                |
|-----------------|---------------------|
| Message length  | 0x05                |
| Message type    | 0x14                |
| Data 1          | command (0-255)     |
| Data 2          | parameter 1 (0-255) |
| Data 3          | parameter 2 (MSB)   |
| Data 4          | parameter 2 (LSB)   |
| CRC 1           | varies              |
| CRC 2           | varies              |
|                 |                     |

Expected reply ACKNOWLEDGE

| Command | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                                   |
|---------|-------------------|-------------------|-----------------------------------------------|
| 0       | 0                 | 1-n               | unit P2 off                                   |
| 0       | 1-99              | 1-n               | unit P2 off for P1 seconds                    |
| 0       | 101-199           | 1-n               | unit P2 off for P1-100 minutes                |
| 0       | 201-218           | 1-n               | unit P2 off for P1-200 hours                  |
| 1       | 0                 | 1-n               | unit P2 on                                    |
| 1       | 1-99              | 1-n               | unit P2 on for P1 seconds                     |
| 1       | 101-199           | 1-n               | unit P2 on for P1-100 minutes                 |
| 1       | 201-218           | 1-n               | unit P2 on for P1-200 hours                   |
| 2       |                   | 0-n               | area P2 all off (0=all areas)                 |
| 3       |                   | 0-n               | area P2 all on (0=all areas)                  |
| 9       | 0-100             | 1-n               | unit P2 lighting level to P1 percent          |
| 101     | 2-99              | 1-n               | unit Lo9(P2) level Hi7(P2) for P1 seconds     |
| 101     | 101-199           | 1-n               | unit Lo9(P2) level Hi7(P2) for P1-100 minutes |
| 101     | 201-218           | 1-n               | unit Lo9(P2) level Hi7(P2) for P1-200 hours   |
| 10      |                   | 1-n               | decrement counter P2                          |
| 11      |                   | 1-n               | increment counter P2                          |
| 12      | 0-255             | 1-n               | set counter P2 to P1                          |

Note: For ALC extended ramp commands, the unit is stored in the low 9 bits of P2. The level to ramp to (0-100%) is stored in the high 7 bits of P2. The rate specifies the full excursion (0% to 100% or 100% to 0%) ramp rate. Smaller excursions will reach the desired level in less time.

| Command              | Parameter 1<br>P1 | Parameter 2<br>P2        | Description                                                                                                                                                                                                                                                  |
|----------------------|-------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13                   | 2-99              | 1-n                      | unit Lo9(P2) ramp to Hi7(P2) at P1 seconds                                                                                                                                                                                                                   |
| 13                   | 101-199           | 1-n                      | unit Lo9(P2) ramp to Hi7(P2) at P1-100 minutes                                                                                                                                                                                                               |
| 13                   | 201-210           | 1-n                      | unit Lo9(P2) ramp to Hi7(P2) at P1-200 hours                                                                                                                                                                                                                 |
| 14<br>14<br>14<br>15 | 0<br>1<br>2-13    | 1-n<br>1-n<br>1-n<br>1-n | Lightolier Compose unit P2 off<br>Lightolier Compose unit P2 on<br>Lightolier Compose unit P2 scene A-L, respectively<br>send request status message to UPB unit P2                                                                                          |
| 16+s                 | 0                 | 1-n                      | unit P2 dim s steps (s=1-9)                                                                                                                                                                                                                                  |
| 16+s                 | 1-99              | 1-n                      | unit P2 dim s steps (s=1-9) for P1 seconds                                                                                                                                                                                                                   |
| 16+s                 | 101-199           | 1-n                      | unit P2 dim s steps (s=1-9) for P1-100 minutes                                                                                                                                                                                                               |
| 16+s                 | 201-218           | 1-n                      | unit P2 dim s steps (s=1-9) for P1-200 hours                                                                                                                                                                                                                 |
| 32+s                 | 0                 | 1-n                      | unit P2 brighten s steps (s=1-9)                                                                                                                                                                                                                             |
| 32+s                 | 1-99              | 1-n                      | unit P2 brighten s steps (s=1-9) for P1 sec                                                                                                                                                                                                                  |
| 32+s                 | 101-199           | 1-n                      | unit P2 brighten s steps (s=1-9) for P1-100 minutes                                                                                                                                                                                                          |
| 32+s                 | 201-218           | 1-n                      | unit P2 brighten s steps (s=1-9) for P1-200 hours                                                                                                                                                                                                            |
| 26                   | 0                 | 1-n                      | UPB unit Lo9(P2) blink at Hi7(P2) UPB unit Lo9(P2) blink at Hi7(P2) for P1 seconds UPB unit Lo9(P2) blink at Hi7(P2) for P1-100 minutes UPB unit Lo9(P2) blink at Hi7(P2) for P1-200 hours Hi7(P2) = blink rate: 0 = 0.25 s 1 = 0.50 s 2 = 1.00 s 3 = 2.00 s |
| 26                   | 2-99              | 1-n                      |                                                                                                                                                                                                                                                              |
| 26                   | 101-199           | 1-n                      |                                                                                                                                                                                                                                                              |
| 26                   | 201-210           | 1-n                      |                                                                                                                                                                                                                                                              |
| 27<br>28<br>29<br>30 | 0                 | 1-n<br>1-n<br>1-n<br>1-n | stop blinking UPB unit P2  UPB link P2 off (deactivate)  UPB link P2 on (activate)  UPB link P2 set (store preset)                                                                                                                                           |
| 42<br>43             |                   | 1-n<br>1-n               | CentraLite Scene off CentraLite Scene on                                                                                                                                                                                                                     |
| 44                   | 1-8               | 1-n                      | UPB unit P2 LED P1 off                                                                                                                                                                                                                                       |
| 45                   | 1-8               | 1-n                      | UPB unit P2 LED P1 on                                                                                                                                                                                                                                        |
| 46                   |                   | 1-n                      | RadioRA Phantom Button off                                                                                                                                                                                                                                   |
| 47                   |                   | 1-n                      | RadioRA Phantom Button on                                                                                                                                                                                                                                    |
| 60                   |                   | 1-n                      | scene P2 off (Leviton Scene off command)                                                                                                                                                                                                                     |
| 61                   |                   | 1-n                      | scene P2 on (Leviton Scene on command)                                                                                                                                                                                                                       |
| 62                   |                   | 1-n                      | scene P2 set (Leviton Scene set command)                                                                                                                                                                                                                     |

For security commands, the code specified must be the user code number rather than the actual four digit security code. That is, send a 0x05 as the code if user code 5 is being used.

| Command | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                                                                                                                                                                                     |
|---------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48+m    | 1-n               | 0-n               | arm area P2 in mode m with code P1 P2 = 0 means all areas m = security mode: 0 = disarm 1 = day mode 2 = night mode 3 = away mode 4 = vacation mode 5 = day instant mode 6 = night delayed mode |
| 4       | 1-n               | 1-n               | bypass zone P2 with code P1                                                                                                                                                                     |
| 5       | 1-n               | 1-n               | restore zone P2 with code P1                                                                                                                                                                    |
| 6       | 1-n               | 0-n               | restore all area P2 zones with code P1 P2 = 0 means all areas/zones                                                                                                                             |

For Lumina mode commands, the code specified must be the user code number rather than the actual four digit code. That is, send a 0x05 as the code if user code 5 is being used.

| Command | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                                                                                                                    |
|---------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 48+m    | 1-n               | 1                 | set mode m with code P1 m = mode: 1 = home mode 2 = sleep mode 3 = away mode 4 = vacation mode 5 = party mode 6 = special mode |
| 7       |                   | 1-n               | execute macro button P2                                                                                                        |
| 8       | 0-3               |                   | set energy cost to P1 $0 = low$ $1 = mid$ $2 = high$ $3 = critical$                                                            |
| 64      | 0                 | 1-n               | energy saver P2 off                                                                                                            |
| 64      | 1-99              | 1-n               | energy saver P2 off for P1 seconds                                                                                             |
| 64      | 101-199           | 1-n               | energy saver P2 off for P1-100 minutes                                                                                         |
| 64      | 201-218           | 1-n               | energy saver P2 off for P1-200 hours                                                                                           |
| 65      | 0                 | 1-n               | energy saver P2 on                                                                                                             |
| 65      | 1-99              | 1-n               | energy saver P2 on for P1 seconds                                                                                              |
| 65      | 101-199           | 1-n               | energy saver P2 on for P1-100 minutes                                                                                          |
| 65      | 201-218           | 1-n               | energy saver P2 on for P1-200 hours                                                                                            |

For commands 66-70, P2 may be set to zero to indicate "all thermostats" in those controllers that support this capability.

For the following two commands, temperatures are stored in the Omni temperature format (see Appendix C) where 0 = -40 degC and 255 = 87.5 degC. Thus, 44-180 corresponds to 0 to 122 degF or -18 to 50 degC.

| Command | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                                                                                                |
|---------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------|
| 66      | 44-180            | 0-n               | set temp zone P2 low/heat setpoint to P1                                                                   |
| 67      | 44-180            | 0-n               | set temp zone P2 high/cool setpoint to P1                                                                  |
| 68      | 0-3               | 0-n               | set thermostat P2 system mode to P1 $0 = \text{off}$ $1 = \text{heat}$ $2 = \text{cool}$ $3 = \text{auto}$ |
| 69      | 0-1               | 0-n               | set thermostat P2 fan mode to P1 0 = auto 1 = on                                                           |

For the following two commands, temperatures are stored in the Omni temperature format (see Appendix C).

| Command  | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                                                              |
|----------|-------------------|-------------------|--------------------------------------------------------------------------|
| 71       | -50 to 50         | 0-n               | raise/lower temp P2 low/heat setting by P1 P2 = 0 means all thermostats  |
| 72       | -50 to 50         | 0-n               | raise/lower temp P2 high/cool setting by P1 P2 = 0 means all thermostats |
| 70       | 0/255             | 0-n               | set thermostat P2 hold mode to P1<br>0 = off<br>255 = hold               |
| 80       |                   | 1-n               | show message P2 (with beep and LED)                                      |
| 86       | 0-2               | 1-n               | show message P2 P1 = mode 1 = no beep 2 = no beep or LED                 |
| 81       |                   | 1-n               | log message P2                                                           |
| 82       | 0-n               | 0-n               | clear message P2 (0=all)<br>if clear all messages, P1 = area (0=all)     |
| 83<br>84 | 1-n               | 1-n<br>1-n        | say message P2<br>phone number P1 and say message P2                     |
| 85       | 1-n               | 1-n               | send message P2 out serial port P1                                       |

| Command | Parameter 1<br>P1 | Parameter 2<br>P2 | Description                                                                                                             |
|---------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------|
| 102     | 0-255             | 0-16              | enable/disable console beeper P2 P2 = 0 means all consoles P1 = mode 0 = disabled 1 = enabled                           |
| 103     | 0-6               | 0-16              | console P2 (0=all consoles) beep P1 0 = off 1 = indefinitely 2 = 1 time 3 = 2 times 4 = 3 times 5 = 4 times 6 = 5 times |
| 112     | 0-3               | 0-n               | set audio zone P2 (0=all zones) to P1 0 = off 1 = on 2 = mute off 3 = mute on                                           |
| 113     | 0-100             | 1-n               | set audio zone P2 volume to P1 percent                                                                                  |
| 114     | 1-n               | 1-n               | set audio zone P2 to audio source P1                                                                                    |
| 115     | 1-40              | 1-n               | audio zone P2 select key P1 (see audio key codes table)                                                                 |

# **Audio Key Codes**

| Code | HAI Hi-Fi   | Russound 1   | NuVo <sup>2</sup> | NuVo Grand Concerto      | Xantech <sup>3</sup>   | Speakercraft <sup>4</sup> |
|------|-------------|--------------|-------------------|--------------------------|------------------------|---------------------------|
| 1    | Power       | Power        | Power             | Power                    | Power                  | Source select 1           |
| 2    | Source step | Source step  | Source step       | Source step              | Source select 1        | Source select 2           |
| 3    | Vol up      | Vol up       | Vol up            | Vol up                   | Source select 2        | Source select 3           |
| 4    | Vol down    | Vol down     | Vol down          | Vol down                 | Source select 3        | Source select 4           |
| 5    | Mute        | Mute         | Mute              | Mute                     | Source select 4        | Source select 5           |
| 6    |             | Play         | Play              | Play / Pause             | Source select 5        | Source select 6           |
| 7    |             | Stop         | Stop              | Stop (not used)          | Source select 6        | Source select 7           |
| 8    |             | Pause        | Pause             | Pause (not used)         | Source select 7        | Source select 8           |
| 9    |             | Minus        | Rewind            | Previous                 | Source select 8        |                           |
| 10   |             | Plus         | Forward           | Next                     | Channel up             | Mute                      |
| 11   |             | Previous     | Fast rewind       | Favorite 1               | Channel down           | Vol Up                    |
| 12   |             | Next         | Fast forward      | Favorite 2               | Mute                   | Power                     |
| 13   |             | Record       | Continuous        | Favorite 3               | Play                   | Vol Down                  |
| 14   |             | Channel up   | Shuffle           | Favorite 4               | Stop                   |                           |
| 15   |             | Channel down | Group             | Favorite 5               | Pause                  |                           |
| 16   |             | Zero         | Disc              | Favorite 6               | Rewind                 |                           |
| 17   |             | One          | Zero              | Favorite 7               | Forward                | One                       |
| 18   |             | Two          | One               | Favorite 8               | Vol up                 | Two                       |
| 19   |             | Three        | Two               | Favorite 9               | Vol down               | Three                     |
| 20   |             | Four         | Three             | Favorite 10              | Tier 2 power           | Four                      |
| 21   |             | Five         | Four              | Favorite 11              | Tier 2 source select 1 | Five                      |
| 22   |             | Six          | Five              | Favorite 12              | Tier 2 source select 2 | Six                       |
| 23   |             | Seven        | Six               | Ok button down           | Tier 2 source select 3 | Seven                     |
| 24   |             | Eight        | Seven             | Ok button up             | Tier 2 source select 4 | Eight                     |
| 25   |             | Nine         | Eight             | Play / Pause button down | Tier 2 source select 5 | Nine                      |
| 26   |             | Plus ten     | Nine              | Play / Pause button up   | Tier 2 source select 6 | Track                     |
| 27   |             | Enter        | Plus ten          | Previous button down     | Tier 2 source select 7 | Zero                      |
| 28   |             | Last         | Enter             | Previous button up       | Tier 2 source select 8 | Disc                      |
| 29   |             | Sleep        | Hotkey zero       | Next button down         | Tier 2 channel up      | Random                    |
| 30   |             | Guide        | Hotkey one        | Next button up           | Tier 2 channel down    | Repeat                    |
| 31   |             | Exit         | Hotkey two        | Power / Mute button down | Tier 2 mute            | Bass                      |
| 32   |             | Info         | Hotkey three      | Power / Mute button up   | Tier 2 play            | Treble                    |
| 33   |             | Menu         | Hotkey four       | Menu button down         | Tier 2 stop            | Guide                     |
| 34   |             | Menu up      | Hotkey five       | Menu button up           | Tier 2 pause           | Menu                      |
| 35   |             | Menu right   | Hotkey six        | Up button down           | Tier 2 rewind          | Up                        |
| 36   |             | Menu down    | Hotkey seven      | Up button up             | Tier 2 forward         | Left                      |
| 37   |             | Menu left    | Hotkey eight      | Down button down         |                        | Select                    |
| 38   |             | Select       | Hotkey nine       | Down button up           |                        | Right                     |
| 39   |             | Favorite 1   |                   |                          |                        | Down                      |
| 40   |             | Favorite 2   |                   |                          |                        | Escape                    |
| 41   |             |              |                   |                          |                        | Info                      |
| 42   |             |              |                   |                          |                        | Rewind                    |
| 43   |             |              |                   |                          |                        | Forward                   |
| 44   |             |              |                   |                          |                        | Pause                     |
| 45   |             |              |                   |                          |                        | Play                      |
| 46   |             |              |                   |                          |                        | Stop                      |

<sup>1:</sup> applies to Russound CAM and CAV audio systems.

<sup>2:</sup> applies to NuVo Concerto, Essentia, and Simplese audio systems (Essentia and Simplese responds to Key Codes 1-5 only).

<sup>3:</sup> applies to Xantech MRC-88 audio system.
4: applies to Speakercraft MZC and Proficient M4 and M6 audio systems.

#### CONNECTED SECURITY SYSTEM COMMAND

This message is used to send commands to a connected security system.

| Start character | 0x21                   |
|-----------------|------------------------|
| Message length  | 0x09                   |
| Message type    | 0x2F                   |
| Data 1          | command                |
| Data 2          | partition number (1-8) |
| Data 3          | digit 1 (0-9)          |
| Data 4          | digit 2 (0-9)          |
| Data 5          | digit 3 (0-9)          |
| Data 6          | digit 4 (0-9)          |
| Data 7          | digit 5 (0-9)          |
| Data 8          | digit 6 (0-9)          |
| CRC 1           | varies                 |
| CRC 2           | varies                 |

## SET TIME COMMAND

This message is used to set the time, date, and daylight savings time flag in an HAI controller.

| Start character | 0x21              |
|-----------------|-------------------|
| Message length  | 0x08              |
| Message type    | 0x13              |
| Data 1          | year (0-99)       |
| Data 2          | month (1-12)      |
| Data 3          | day (1-31)        |
| Data 4          | day of week (1-7) |
| Data 5          | hour (0-23)       |
| Data 6          | minute (0-59)     |
|                 |                   |

Data 7 daylight savings time flag (0-1)

CRC 1 varies CRC 2 varies

Expected reply ACKNOWLEDGE

#### ACTIVATE KEYPAD EMERGENCY

This message is used to activate a burglary, fire, or auxiliary keypad emergency alarm in an area on an Omni IIe or OmniPro II system.

| Start character | 0x21       |
|-----------------|------------|
| Message length  | 0x03       |
| Message type    | 0x2C       |
| Data 1          | area (1-8) |

Data 2 emergency type (1=burglary, 2=fire, 3=auxiliary)

CRC 1 varies CRC 2 varies

Expected reply ACKNOWLEDGE

#### VALIDATE SECURITY CODE MESSAGES

These messages instruct the controller to confirm that the specified four-digit security code is valid in the specified area. The code is only valid if it matches a four-digit user code in the area, and that code is currently time-enabled. The controller will return the user code number and authority level for the code. The controller will also check to see if the duress code was specified. If so, it will return the duress code number (251) as the user code number and set the authority level to user.

- Request security code validation
- Security code validation

#### REQUEST SECURITY CODE VALIDATION

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x06 |
| Message type    | 0x26 |

Data 1 area number (1-8)
Data 2 first digit of code
Data 3 second digit of code
Data 4 third digit of code
Data 5 fourth digit of code

CRC 1 varies CRC 2 varies

Each of the digits of the security code must be sent as the numeric value of the digit, 0x00 through 0x09.

#### SECURITY CODE VALIDATION

| Start character | 0x21 |
|-----------------|------|
| Message length  | 0x03 |
| Message type    | 0x27 |

Data 1 user code number (1-99, 251 for duress, 0 if invalid)

Data 2 authority level (0-3)

CRC 1 varies CRC 2 varies

The authority level is as follows:

| 0 | Invalid code |
|---|--------------|
| 1 | Master       |
| 2 | Manager      |
| 3 | User         |

#### NOTIFICATION MESSAGES

HAI controllers generate event notifications upon the occurrence of various changes in the controller. When the ENABLE NOTIFICATIONS feature is enabled and a change or event occurs in the controller, the event is automatically sent to the client. When the ENABLE NOTIFICATIONS feature is enabled, the system does not need to be polled, the notifications are automatically sent to the client.

- Enable notifications
- Object event notifications
- Other event notifications

#### **ENABLE NOTIFICATIONS**

The ENABLE NOTIFICATIONS message requests the HAI controller to send event notifications as they occur. If the ENABLE NOTIFICATIONS feature is disabled, the HAI controller will not send event data.

Start character 0x21 Message length 0x02 Message type 0x15

Data 1 enable byte (0=disable, 1=enable)

CRC 1 varies CRC 2 varies

Expected reply ACKNOWLEDGE

#### **OBJECT EVENT NOTIFICATIONS**

When a zone, unit, thermostat, and auxiliary sensor events occurs, the HAI controller will send the respective OBJECT STATUS report message to the client.

#### ZONE NOTIFICATIONS:

When an event occurs with a zone (e.g. a zone becomes not ready, secure, bypassed, or restored), the HAI controller will automatically send the ZONE STATUS message for the respective zone. See ZONE STATUS for message details.

#### **UNIT NOTIFICATIONS:**

When an event occurs with a control unit (e.g. a unit is turned on or off, the light level of a unit changes, the value of a flag changes, etc.), the HAI controller will automatically send the UNIT STATUS message for the respective control unit. See UNIT STATUS for message details

#### THERMOSTAT NOTIFICATIONS:

When an event occurs with a thermostat (e.g. the current temperature changes, heat or cool setting changes, mode changes, hold or fan changes, etc.), the HAI controller will automatically send the THERMOSTAT STATUS message for the respective thermostat. See THERMOSTAT STATUS for message details.

#### **AUXILIARY SENSOR NOTIFICATIONS:**

When an event occurs with an auxiliary sensor (e.g. current temperature or humidity changes, low/heat or high/cool setting changes, output changes state, etc.) the HAI controller will automatically send the AUXILIARY SENSOR STATUS message for the respective auxiliary sensor. See AUXILIARY SENSOR STATUS for message details.

#### OTHER EVENT NOTIFICATIONS

When other system events occur, the HAI controller will send the respective event notification messages. Other event notifications are sent when:

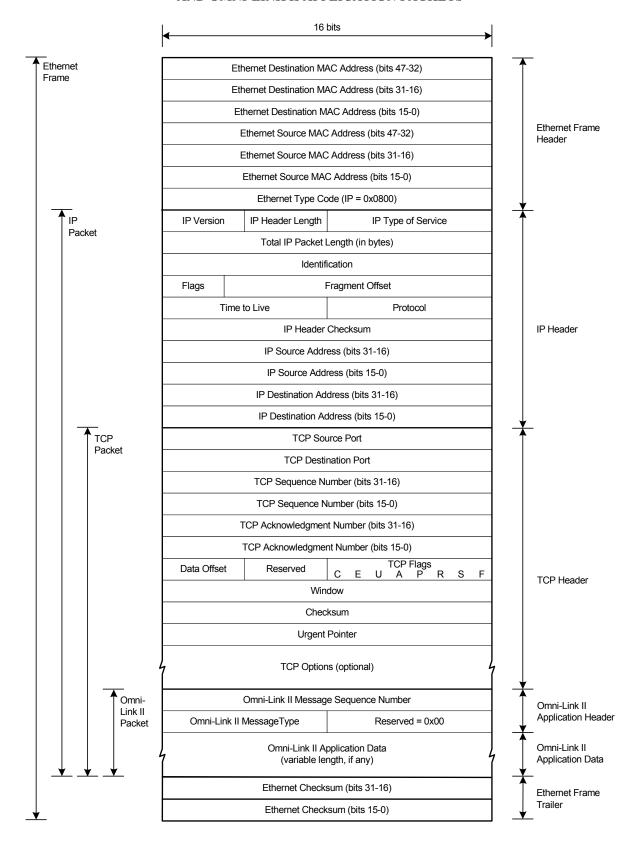
- The security system is armed/disarmed
- The Lumina mode changes
- An alarm is activated
- X-10 / UPB / RadioRA signals are received
- Certain trouble conditions are detected
- The phone line changes state
- The cost of energy changes
- The user activates a macro button
- Pro-Link message received
- CentraLite switch is pressed

When these other event notifications are sent, they are sent in the following format:

| Start character | 0x21                                  |
|-----------------|---------------------------------------|
| Message length  | (2 * number of system events) + 1     |
| Message type    | 0x37                                  |
| Data 1          | High byte of oldest system event      |
| Data 2          | Low byte of oldest system event       |
| Data 3          | High byte of next oldest system event |
| Data 4          | Low byte of next oldest system event  |
|                 |                                       |
| Data n-1        | High byte of most recent event        |
| Data n          | Low byte of most recent event         |
| CRC 1           | varies                                |
| CRC 2           | varies                                |
|                 |                                       |

Each event notification is identified by a unique 16-bit event number. The encoding of these events is shown below. The encoding is shown in binary, with the most-significant bit to the left.

| USER MACRO BUTTON     | 0000 0000 bbbb bb | bbb b = button number                                                                                                        |
|-----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| PRO-LINK MESSAGE      | 0000 0001 0mmm mr | mmm m = message number                                                                                                       |
| CENTRALITE SWITCH     | 0000 0001 1sss ss | sss s = switch number                                                                                                        |
| ALARM (OMNI FAMILY)   | 0000 0010 tttt aa | t = alarm type  1 = burglary  2 = fire  3 = gas  4 = auxiliary  5 = freeze  6 = water  7 = duress  8 = temperature  a = area |
| ALARM (LUMINA FAMILY) | 0000 0010 tttt 00 | t = alarm type 5 = freeze 6 = water 8 = temperature                                                                          |


| COMPOSE CODE RECEIVED                              | 0111 ssss hhhh uuuu | <pre>s = state     0 = off     1 = on     2-13 = scene A-L h = Compose house code     0-15 = A-P u = Compose unit number     0-15 = 1-16</pre>                                                                                                           |
|----------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X-10 CODE RECEIVED                                 | 0000 11sa hhhh uuuu | <pre>s = state     0 = off     1 = on a = all units flag     0 = one unit only     1 = all on/off h = X-10 house code     0-15 = A-P u = X-10 unit number     0-15 = 1-16</pre>                                                                          |
| SECURITY ARMING                                    | dmmm aaaa cccc cccc | <pre>d = exit delay flag     0 = end of delay     1 = start of delay     must be 1 for off  m = security mode     0 = off     1 = day     2 = night     3 = away     4 = vacation     5 = day instant     6 = night delayed  a = area     c = code</pre> |
| LUMINA MODE CHANGE                                 | dmmm 0001 cccc cccc | <pre>d = mode change delay flag     0 = end of delay     1 = start of delay  m = mode     1 = home     2 = sleep     3 = away     4 = vacation     5 = party     6 = special c = code</pre>                                                              |
| ALC, UPB, RADIO RA,<br>OR STARLITE<br>SWITCH PRESS | 1111 ssss uuuu uuuu | <pre>s = switch     0 = off     1 = on     2-11 = switch 1-10 u = unit number</pre>                                                                                                                                                                      |
| UPB LINK                                           | 1111 11cc nnnn nnnn | <pre>c = link command    0 = off (deactivate)    1 = on (activate)    2 = set (store preset)    3 = fade stop n = link number</pre>                                                                                                                      |
| ALL ON/OFF                                         | 0000 0011 111s aaaa | <pre>s = state     0 = off     1 = on a = area</pre>                                                                                                                                                                                                     |

Copyright © 2008 Home Automation, Inc. All Rights Reserved Page 46

| PHONE LINE DEAD PHONE LINE RING PHONE LINE OFF HOOK PHONE LINE ON HOOK | 0000<br>0000<br>0000<br>0000 | 0011<br>0011<br>0011<br>0011 |                              | 0000<br>0001<br>0010<br>0011 |
|------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| AC POWER OFF<br>AC POWER RESTORED                                      | 0000                         | 0011<br>0011                 | 0000                         | 0100<br>0101                 |
| BATTERY LOW<br>BATTERY OK                                              | 0000                         | 0011<br>0011                 |                              | 0110<br>0111                 |
| DCM TROUBLE<br>DCM OK                                                  |                              | 0011<br>0011                 |                              |                              |
| ENERGY COST LOW ENERGY COST MID ENERGY COST HIGH ENERGY COST CRITICAL  | 0000<br>0000<br>0000<br>0000 | 0011<br>0011<br>0011<br>0011 | 0000<br>0000<br>0000<br>0000 | 1010<br>1011<br>1100<br>1101 |

## APPENDIX A - NETWORK DIAGRAMS

# TYPICAL ETHERNET FRAME WITH EMBEDDED IP, TCP, AND OMNI-LINK II APPLICATION PACKETS



## HAI APPLICATION PACKET FORMAT

The following table describes the format of the Omni-Link II application data that is transmitted within the user data (payload) area of a TCP/IP packet.

| Size (bytes) | Description             | Comments                                                                                                                                                                                                                                                                                                                  |
|--------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2            | Message sequence number | = Sequence tracking disabled 165535 = Sequence number of this packet (byte order is MSBLSB)                                                                                                                                                                                                                               |
| 1            | Message type            | 0 = No message 1 = Client request new session 2 = Controller acknowledge new session 3 = Client request secure connection 4 = Controller acknowledge secure connection 5 = Client session terminated 6 = Controller session terminated 7 = Controller cannot start new session 32 = Omni-Link II application data message |
| 1            | Reserved                | 0 = unused                                                                                                                                                                                                                                                                                                                |
| variable     | Message data            | May be empty, depending on message type                                                                                                                                                                                                                                                                                   |

## TYPICAL MESSAGE SEQUENCE

| Sequence<br>Number | Encrypted | Client                                 | Direction     | Controller                                                                                       |
|--------------------|-----------|----------------------------------------|---------------|--------------------------------------------------------------------------------------------------|
| 1                  | No        | Request new session                    | $\rightarrow$ |                                                                                                  |
| 1                  | No        |                                        | <b>←</b>      | Acknowledge new session protocol version session ID (40-bit random data generated by controller) |
| 2                  | Yes       | Request secure connection - session ID | <b>→</b>      |                                                                                                  |
| 2                  | Yes       |                                        | <b>←</b>      | Acknowledge secure connection - session ID                                                       |
|                    | Yes       | Omni-Link message                      | $\rightarrow$ |                                                                                                  |
|                    | Yes       |                                        | <b>←</b>      | Omni-Link II application data reply message                                                      |
|                    |           | •                                      |               | •                                                                                                |
|                    | No        | Client session terminated              | $\rightarrow$ |                                                                                                  |
|                    | No        |                                        | <b>←</b>      | Controller session terminated (timed out, terminated by client, etc.)                            |

#### APPENDIX B - CRC-16 ERROR DETECTION ROUTINES

#### **Turbo Pascal**

This routine is written in Turbo Pascal. First initialize CRC to 0. Then, starting with the message length byte, call Update\_CRC for each byte of the message passing the message byte in Data. The low byte of CRC will contain the low byte of the CRC-16 remainder and should be sent first. The high byte of CRC will contain the high byte of the CRC-16 remainder and should be sent last.

```
var
  CRC: Word;
procedure Update CRC (Data: Byte);
const
  Poly = $A001;
                         {CRC-16 polynomial}
  I: Integer;
  Flag: Boolean;
  CRC := CRC xor Data;
  for I := 1 to 8 do
  begin
    Flag := (CRC and 1) <> 0;
    CRC := CRC shr 1;
    if Flag then CRC := CRC xor Poly;
  end:
end {Update CRC};
```

### Motorola MC68HC11 Assembly Language

This routine is written in Motorola MC68HC11 assembly language. First initialize CRC+0 and CRC+1 to 0. Then, starting with the message length byte, call UPDCRC for each byte of the message with the B accumulator containing the message byte. CRC+1 will contain the low byte of the CRC-16 remainder and should be sent first. CRC+0 will contain the high byte of the CRC-16 remainder and should be sent last.

```
$A001
                       CRC-16 polynomial
POLY EQU
UPDCRC
      PSHB
                       save registers
      PSHA
     EORB CRC+1
                       add in new byte
     LDAA #8
                       get shift count
      STAA CRC+1
                       use low byte of CRC for counter
     LDAA CRC+0
                       get high byte of CRC
10$
     LSRA
                       shift CRC
     RORB
     BCC
           20$
                       branch if we didn't shift out a 1
     EORA
           #>POLY
                       add in CRC polynomial
           #<POLY
      EORB
20$
      DEC
           CRC+1
                       count the shift
      BNE
                       branch back if more to do
           10$
      STD
           CRC
                       save updated CRC
      PULA
                       restore registers
      PULB
      RTS
```

This routine is written in the C/C++ language.

```
void UpdateCRC(unsigned short int *CRC, unsigned char x)
  // This function uses the initial CRC value passed in the first
  // argument, then modifies it using the single character passed
  // as the second argument, according to a CRC-16 polynomial
  // calculation used for HAI communication protocol.
  // Arguments:
  // CRC -- pointer to starting CRC value // x -- new character to be processed
  // Returns:
  // The function does not return any values, but updates the variable
  // pointed to by CRC
  static int const Poly = 0xA001; // CRC-16 polynomial
  int i;
  bool flag;
  *CRC ^= x;
  for (i=0; i<8; i++)
    flag = ((*CRC \& 1) == 1);
    *CRC = (unsigned short int) (*CRC >> 1);
    if (flag)
      *CRC ^= Poly;
  return;
```

## APPENDIX C - OMNI TEMPERATURE FORMAT

Temperatures in HAI controllers are specified in the Omni temperature format. This format allows a temperature span of -40.0 to +87.5 degC (-40.0 to +189.5 degF) to be specified with 0.5 degC resolution in a single byte. Each Omni temperature "degree" is 0.5 degC, with 0 corresponding to -40 degC (-40 degF) and 255 corresponding to +87.5 degC (+189.5 degF).

The following chart shows the relationship between Omni, Celsius, and Fahrenheit temperatures.

| Omni | Deg. C | Deg. F | Omni | Deg. C | Deg. F | Omni | Deg. C | Deg. F |
|------|--------|--------|------|--------|--------|------|--------|--------|
| 0    | - 40.0 | - 40.0 | 44   | - 18.0 | - 00.4 | 88   | 04.0   | 39.2   |
| 1    | - 39.5 | - 39.1 | 45   | - 17.5 | 00.5   | 89   | 04.5   | 40.1   |
| 2    | - 39.0 | - 38.2 | 46   | - 17.0 | 01.4   | 90   | 05.0   | 41.0   |
| 3    | - 38.5 | - 37.3 | 47   | - 16.5 | 02.3   | 91   | 05.5   | 41.9   |
| 4    | - 38.0 | - 36.4 | 48   | - 16.0 | 03.2   | 92   | 06.0   | 42.8   |
| 5    | - 37.5 | - 35.5 | 49   | - 15.5 | 04.1   | 93   | 06.5   | 43.7   |
| 6    | - 37.0 | - 34.6 | 50   | - 15.0 | 05.0   | 94   | 07.0   | 44.6   |
| 7    | - 36.5 | - 33.7 | 51   | - 14.5 | 05.9   | 95   | 07.5   | 45.5   |
| 8    | - 36.0 | - 32.8 | 52   | - 14.0 | 06.8   | 96   | 08.0   | 46.4   |
| 9    | - 35.5 | - 31.9 | 53   | - 13.5 | 07.7   | 97   | 08.5   | 47.3   |
| 10   | - 35.0 | - 31.0 | 54   | - 13.0 | 08.6   | 98   | 09.0   | 48.2   |
| 11   | - 34.5 | - 30.1 | 55   | - 12.5 | 09.5   | 99   | 09.5   | 49.1   |
| 12   | - 34.0 | - 29.2 | 56   | - 12.0 | 10.4   | 100  | 10.0   | 50.0   |
| 13   | - 33.5 | - 28.3 | 57   | - 11.5 | 11.3   | 101  | 10.5   | 50.9   |
| 14   | - 33.0 | - 27.4 | 58   | - 11.0 | 12.2   | 102  | 11.0   | 51.8   |
| 15   | - 32.5 | - 26.5 | 59   | - 10.5 | 13.1   | 103  | 11.5   | 52.7   |
| 16   | - 32.0 | - 25.6 | 60   | - 10.0 | 14.0   | 104  | 12.0   | 53.6   |
| 17   | - 31.5 | - 24.7 | 61   | - 09.5 | 14.9   | 105  | 12.5   | 54.5   |
| 18   | - 31.0 | - 23.8 | 62   | - 09.0 | 15.8   | 106  | 13.0   | 55.4   |
| 19   | - 30.5 | - 22.9 | 63   | - 08.5 | 16.7   | 107  | 13.5   | 56.3   |
| 20   | - 30.0 | - 22.0 | 64   | - 08.0 | 17.6   | 108  | 14.0   | 57.2   |
| 21   | - 29.5 | - 21.1 | 65   | - 07.5 | 18.5   | 109  | 14.5   | 58.1   |
| 22   | - 29.0 | - 20.2 | 66   | - 07.0 | 19.4   | 110  | 15.0   | 59.0   |
| 23   | - 28.5 | - 19.3 | 67   | - 06.5 | 20.3   | 111  | 15.5   | 59.9   |
| 24   | - 28.0 | - 18.4 | 68   | - 06.0 | 21.2   | 112  | 16.0   | 60.8   |
| 25   | - 27.5 | - 17.5 | 69   | - 05.5 | 22.1   | 113  | 16.5   | 61.7   |
| 26   | - 27.0 | - 16.6 | 70   | - 05.0 | 23.0   | 114  | 17.0   | 62.6   |
| 27   | - 26.5 | - 15.7 | 71   | - 04.5 | 23.9   | 115  | 17.5   | 63.5   |
| 28   | - 26.0 | - 14.4 | 72   | - 04.0 | 24.8   | 116  | 18.0   | 64.4   |
| 29   | - 25.5 | - 13.9 | 73   | - 03.5 | 25.7   | 117  | 18.5   | 65.3   |
| 30   | - 25.0 | - 13.0 | 74   | - 03.0 | 26.6   | 118  | 19.0   | 66.2   |
| 31   | - 24.5 | - 12.1 | 75   | - 02.5 | 27.5   | 119  | 19.5   | 67.1   |
| 32   | - 24.0 | - 11.2 | 76   | - 02.0 | 28.4   | 120  | 20.0   | 68.0   |
| 33   | - 23.5 | - 10.3 | 77   | - 01.5 | 29.3   | 121  | 20.5   | 68.9   |
| 34   | - 23.0 | - 09.4 | 78   | - 01.0 | 30.2   | 122  | 21.0   | 69.8   |
| 35   | - 22.5 | - 08.5 | 79   | - 00.5 | 31.1   | 123  | 21.5   | 70.7   |
| 36   | - 22.0 | - 07.6 | 80   | 0      | 32.0   | 124  | 22.0   | 71.6   |
| 37   | - 21.5 | - 06.7 | 81   | 00.5   | 32.9   | 125  | 22.5   | 72.5   |
| 38   | - 21.0 | - 05.8 | 82   | 01.0   | 33.8   | 126  | 23.0   | 73.4   |
| 39   | - 20.5 | - 04.9 | 83   | 01.5   | 34.7   | 127  | 23.5   | 74.3   |
| 40   | - 20.0 | - 04.0 | 84   | 02.0   | 35.6   | 128  | 24.0   | 75.2   |
| 41   | - 19.5 | - 03.1 | 85   | 02.5   | 36.5   | 129  | 24.5   | 76.1   |
| 42   | - 19.0 | - 02.2 | 86   | 03.0   | 37.4   | 130  | 25.0   | 77.0   |
| 43   | - 18.5 | - 01.3 | 87   | 03.5   | 38.3   | 131  | 25.5   | 77.9   |

| Omni | Deg. C | Deg. F | Omni | Deg. C | Deg. F | Omni | Deg. C | Deg. F |
|------|--------|--------|------|--------|--------|------|--------|--------|
| 132  | 26.0   | 78.8   | 176  | 48.0   | 118.4  | 220  | 70.0   | 158.0  |
| 133  | 26.5   | 79.7   | 177  | 48.5   | 119.3  | 221  | 70.5   | 158.9  |
| 134  | 27.0   | 80.6   | 178  | 49.0   | 120.2  | 222  | 71.0   | 159.8  |
| 135  | 27.5   | 81.5   | 179  | 49.5   | 121.1  | 223  | 71.5   | 160.7  |
| 136  | 28.0   | 82.4   | 180  | 50.0   | 122.0  | 224  | 72.0   | 161.6  |
| 137  | 28.5   | 83.3   | 181  | 50.5   | 122.9  | 225  | 72.5   | 162.5  |
| 138  | 29.0   | 84.2   | 182  | 51.0   | 123.8  | 226  | 73.0   | 163.4  |
| 139  | 29.5   | 85.1   | 183  | 51.5   | 124.7  | 227  | 73.5   | 164.3  |
| 140  | 30.0   | 86.0   | 184  | 52.0   | 125.6  | 228  | 74.0   | 165.2  |
| 141  | 30.5   | 86.9   | 185  | 52.5   | 126.5  | 229  | 74.5   | 166.1  |
| 142  | 31.0   | 87.8   | 186  | 53.0   | 127.4  | 230  | 75.0   | 167.0  |
| 143  | 31.5   | 88.7   | 187  | 53.5   | 127.3  | 231  | 75.5   | 167.9  |
| 144  | 32.0   | 89.6   | 188  | 54.0   | 129.2  | 232  | 76.0   | 168.8  |
| 145  | 32.5   | 90.5   | 189  | 54.5   | 130.1  | 233  | 76.5   | 169.7  |
| 146  | 33.0   | 91.4   | 190  | 55.0   | 131.0  | 234  | 77.0   | 170.6  |
| 147  | 33.5   | 92.3   | 191  | 55.5   | 131.9  | 235  | 77.5   | 171.5  |
| 148  | 34.0   | 93.2   | 192  | 56.0   | 132.8  | 236  | 78.0   | 172.4  |
| 149  | 34.5   | 94.1   | 193  | 56.5   | 133.7  | 237  | 78.5   | 173.3  |
| 150  | 35.0   | 95.0   | 194  | 57.0   | 134.6  | 238  | 79.0   | 174.2  |
| 151  | 35.5   | 95.9   | 195  | 57.5   | 135.5  | 239  | 79.5   | 175.1  |
| 152  | 36.0   | 96.8   | 196  | 58.0   | 136.4  | 240  | 80.0   | 176.0  |
| 153  | 36.5   | 97.7   | 197  | 58.5   | 137.3  | 241  | 80.5   | 176.9  |
| 154  | 37.0   | 98.6   | 198  | 59.0   | 138.2  | 242  | 81.0   | 177.8  |
| 155  | 37.5   | 99.5   | 199  | 59.5   | 139.1  | 243  | 81.5   | 178.7  |
| 156  | 38.0   | 100.4  | 200  | 60.0   | 140.0  | 244  | 82.0   | 179.6  |
| 157  | 38.5   | 101.3  | 201  | 60.5   | 140.9  | 245  | 82.5   | 180.5  |
| 158  | 39.0   | 102.2  | 202  | 61.0   | 141.8  | 246  | 83.0   | 181.4  |
| 159  | 39.5   | 103.1  | 203  | 61.5   | 142.7  | 247  | 83.5   | 182.3  |
| 160  | 40.0   | 104.0  | 204  | 62.0   | 143.6  | 248  | 84.0   | 183.2  |
| 161  | 40.5   | 104.9  | 205  | 62.5   | 144.5  | 249  | 84.5   | 184.1  |
| 162  | 41.0   | 105.8  | 206  | 63.0   | 145.4  | 250  | 85.0   | 185.0  |
| 163  | 41.5   | 106.7  | 207  | 63.5   | 146.3  | 251  | 85.5   | 185.9  |
| 164  | 42.0   | 107.6  | 208  | 64.0   | 147.2  | 252  | 86.0   | 186.8  |
| 165  | 42.5   | 108.5  | 209  | 64.5   | 148.1  | 253  | 86.5   | 187.7  |
| 166  | 43.0   | 109.4  | 210  | 65.0   | 149.0  | 254  | 87.0   | 188.6  |
| 167  | 43.5   | 110.3  | 211  | 65.5   | 149.9  | 255  | 87.5   | 189.5  |
| 168  | 44.0   | 111.2  | 212  | 66.0   | 150.8  |      |        |        |
| 169  | 44.5   | 112.1  | 213  | 66.5   | 151.7  |      |        |        |
| 170  | 45.0   | 113.0  | 214  | 67.0   | 152.6  |      |        |        |
| 171  | 45.5   | 113.9  | 215  | 67.5   | 153.5  |      |        |        |
| 172  | 46.0   | 114.8  | 216  | 68.0   | 154.4  |      |        |        |
| 173  | 46.5   | 115.7  | 217  | 68.5   | 155.3  |      |        |        |
| 174  | 47.0   | 116.6  | 218  | 69.0   | 156.2  |      |        |        |
| 175  | 47.5   | 117.5  | 219  | 69.5   | 157.1  |      |        |        |

# APPENDIX D - REVISION HISTORY

| $\mathbf{p}$ | 11/  |            | (2 (2 (0.0) |
|--------------|------|------------|-------------|
| Revision     | 2.16 | - Released | (3/3/08)    |
|              |      |            |             |

• Initial release of Omni-Link II Protocol.